Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Image Splicing Detection Based on Texture Features With Fractal Entropy

dc.contributor.author Al-Saidi, Nadia M. G.
dc.contributor.author Jalab, Hamid A.
dc.contributor.author Ibrahim, Rabha W.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Al-Azawi, Razi J.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2022-05-23T12:27:24Z
dc.date.accessioned 2025-09-18T12:05:39Z
dc.date.available 2022-05-23T12:27:24Z
dc.date.available 2025-09-18T12:05:39Z
dc.date.issued 2021
dc.description Al-Saidi, Nadia/0000-0002-7255-5246 en_US
dc.description.abstract Over the past years, image manipulation tools have become widely accessible and easier to use, which made the issue of image tampering far more severe. As a direct result to the development of sophisticated image-editing applications, it has become near impossible to recognize tampered images with naked eyes. Thus, to overcome this issue, computer techniques and algorithms have been developed to help with the identification of tampered images. Research on detection of tampered images still carries great challenges. In the present study, we particularly focus on image splicing forgery, a type of manipulation where a region of an image is transposed onto another image. The proposed study consists of four features extraction stages used to extract the important features from suspicious images, namely, Fractal Entropy (FrEp), local binary patterns (LBP), Skewness, and Kurtosis. The main advantage of FrEp is the ability to extract the texture information contained in the input image. Finally, the "support vector machine" (SVM) classification is used to classify images into either spliced or authentic. Comparative analysis shows that the proposed algorithm performs better than recent state-of-the-art of splicing detection methods. Overall, the proposed algorithm achieves an ideal balance between performance, accuracy, and efficacy, which makes it suitable for real-world applications. en_US
dc.description.sponsorship Faculty Program Grant, University of Malaya, Malaysia [GPF096C-2020] en_US
dc.description.sponsorship This research was funded by the Faculty Program Grant (GPF096C-2020) , University of Malaya, Malaysia. en_US
dc.identifier.citation Al-Azawi, Razi J...et al. (2021). "Image Splicing Detection Based on Texture Features with Fractal Entropy", Computers, Materials and Continua, Vol. 69, No. 3, pp. 3903-3915. en_US
dc.identifier.doi 10.32604/cmc.2021.020368
dc.identifier.issn 1546-2218
dc.identifier.issn 1546-2226
dc.identifier.scopus 2-s2.0-85115907484
dc.identifier.uri https://doi.org/10.32604/cmc.2021.020368
dc.identifier.uri https://hdl.handle.net/123456789/10670
dc.language.iso en en_US
dc.publisher Tech Science Press en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fractal Entropy en_US
dc.subject Image Splicing en_US
dc.subject Texture Features en_US
dc.subject Lbp en_US
dc.subject Svm en_US
dc.title Image Splicing Detection Based on Texture Features With Fractal Entropy en_US
dc.title Image Splicing Detection Based on Texture Features with Fractal Entropy tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Al-Saidi, Nadia/0000-0002-7255-5246
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57202451229
gdc.author.scopusid 34167534300
gdc.author.scopusid 36179737700
gdc.author.scopusid 59614518000
gdc.author.scopusid 7005872966
gdc.author.wosid Ibrahim, Rabha/D-3312-2017
gdc.author.wosid Al-Saidi, Nadia M. G./Q-8261-2019
gdc.author.wosid Al-Azawi, Razi/M-8185-2017
gdc.author.wosid Jalab, Hamid/B-5285-2010
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Al-Azawi, Razi J.] Univ Technol Baghdad, Dept Laser & Optoelect Engn, Baghdad 10066, Iraq; [Al-Saidi, Nadia M. G.] Univ Technol Baghdad, Dept Appl Sci, Baghdad 10066, Iraq; [Jalab, Hamid A.] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia; [Ibrahim, Rabha W.] IEEE 94086547, Kuala Lumpur 59200, Malaysia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan en_US
gdc.description.endpage 3915 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 3903 en_US
gdc.description.volume 69 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3198431960
gdc.identifier.wos WOS:000688414800022
gdc.openalex.fwci 1.22663375
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 8
gdc.plumx.crossrefcites 8
gdc.plumx.mendeley 11
gdc.plumx.scopuscites 11
gdc.scopus.citedcount 11
gdc.wos.citedcount 5
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files