Image Splicing Detection Based on Texture Features With Fractal Entropy
| dc.contributor.author | Al-Saidi, Nadia M. G. | |
| dc.contributor.author | Jalab, Hamid A. | |
| dc.contributor.author | Ibrahim, Rabha W. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Al-Azawi, Razi J. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2022-05-23T12:27:24Z | |
| dc.date.accessioned | 2025-09-18T12:05:39Z | |
| dc.date.available | 2022-05-23T12:27:24Z | |
| dc.date.available | 2025-09-18T12:05:39Z | |
| dc.date.issued | 2021 | |
| dc.description | Al-Saidi, Nadia/0000-0002-7255-5246 | en_US |
| dc.description.abstract | Over the past years, image manipulation tools have become widely accessible and easier to use, which made the issue of image tampering far more severe. As a direct result to the development of sophisticated image-editing applications, it has become near impossible to recognize tampered images with naked eyes. Thus, to overcome this issue, computer techniques and algorithms have been developed to help with the identification of tampered images. Research on detection of tampered images still carries great challenges. In the present study, we particularly focus on image splicing forgery, a type of manipulation where a region of an image is transposed onto another image. The proposed study consists of four features extraction stages used to extract the important features from suspicious images, namely, Fractal Entropy (FrEp), local binary patterns (LBP), Skewness, and Kurtosis. The main advantage of FrEp is the ability to extract the texture information contained in the input image. Finally, the "support vector machine" (SVM) classification is used to classify images into either spliced or authentic. Comparative analysis shows that the proposed algorithm performs better than recent state-of-the-art of splicing detection methods. Overall, the proposed algorithm achieves an ideal balance between performance, accuracy, and efficacy, which makes it suitable for real-world applications. | en_US |
| dc.description.sponsorship | Faculty Program Grant, University of Malaya, Malaysia [GPF096C-2020] | en_US |
| dc.description.sponsorship | This research was funded by the Faculty Program Grant (GPF096C-2020) , University of Malaya, Malaysia. | en_US |
| dc.identifier.citation | Al-Azawi, Razi J...et al. (2021). "Image Splicing Detection Based on Texture Features with Fractal Entropy", Computers, Materials and Continua, Vol. 69, No. 3, pp. 3903-3915. | en_US |
| dc.identifier.doi | 10.32604/cmc.2021.020368 | |
| dc.identifier.issn | 1546-2218 | |
| dc.identifier.issn | 1546-2226 | |
| dc.identifier.scopus | 2-s2.0-85115907484 | |
| dc.identifier.uri | https://doi.org/10.32604/cmc.2021.020368 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/10670 | |
| dc.language.iso | en | en_US |
| dc.publisher | Tech Science Press | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Fractal Entropy | en_US |
| dc.subject | Image Splicing | en_US |
| dc.subject | Texture Features | en_US |
| dc.subject | Lbp | en_US |
| dc.subject | Svm | en_US |
| dc.title | Image Splicing Detection Based on Texture Features With Fractal Entropy | en_US |
| dc.title | Image Splicing Detection Based on Texture Features with Fractal Entropy | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Al-Saidi, Nadia/0000-0002-7255-5246 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 57202451229 | |
| gdc.author.scopusid | 34167534300 | |
| gdc.author.scopusid | 36179737700 | |
| gdc.author.scopusid | 59614518000 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.wosid | Ibrahim, Rabha/D-3312-2017 | |
| gdc.author.wosid | Al-Saidi, Nadia M. G./Q-8261-2019 | |
| gdc.author.wosid | Al-Azawi, Razi/M-8185-2017 | |
| gdc.author.wosid | Jalab, Hamid/B-5285-2010 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Al-Azawi, Razi J.] Univ Technol Baghdad, Dept Laser & Optoelect Engn, Baghdad 10066, Iraq; [Al-Saidi, Nadia M. G.] Univ Technol Baghdad, Dept Appl Sci, Baghdad 10066, Iraq; [Jalab, Hamid A.] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Comp Syst & Technol, Kuala Lumpur 50603, Malaysia; [Ibrahim, Rabha W.] IEEE 94086547, Kuala Lumpur 59200, Malaysia; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan | en_US |
| gdc.description.endpage | 3915 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 3903 | en_US |
| gdc.description.volume | 69 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W3198431960 | |
| gdc.identifier.wos | WOS:000688414800022 | |
| gdc.openalex.fwci | 1.22663375 | |
| gdc.openalex.normalizedpercentile | 0.81 | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 8 | |
| gdc.plumx.mendeley | 11 | |
| gdc.plumx.scopuscites | 11 | |
| gdc.scopus.citedcount | 11 | |
| gdc.wos.citedcount | 5 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |