Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Medical diagnosis via artificial intelligence

dc.contributor.authorAkıllı, Yücel
dc.date.accessioned2016-01-28T14:03:26Z
dc.date.available2016-01-28T14:03:26Z
dc.date.issued2003
dc.departmentÇankaya Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractAlthough machine learning may induce reliable diagnostic algorithms from the limited description of the patient, such diagnostic tools definitely cannot, and also are not intended to, replace the physicians, but should rather be considered as helpful tools that can improve the physicians' performance. The results in this study and from other experiments convincingly demonstrate that the physicians' diagnostic accuracy should be possible to improve with the aid of machine learning. When applying a machine learning system in medical diagnosis there are several specific requirements that the system must meet. This study several issues related to the use of machine learning in medical diagnosis and prognosis problems. In this study, we see a system for medical diagnosis by learning Bayesian networks and rules. Prababilities between disease and sempthoms are used. The Bayesian networks can provide an overall structure of the relationships among the attributes. The rules can capture detailed and interesting patterns in the database. The system is applied to real-life medical databases.en_US
dc.description.abstractMakine öğrenimi, hastanın sınırlı anlatımından güvenilir tanı koyma algoritmalarının oluşturulmasını sağlamasına rağmen, bu tarz tam koyma araçları, tıp adamlarının yerini almaları için değil, daha çok onların performanslarım ilerletmelerinde onlara yardımcı olmaları için geliştirilmişlerdir. Bu konuda yaptığım çalışma ve diğer deney sonuçları, tıp adamlarının tam koyma doğruluklanmn, makine öğreniminin yardımıyla geliştirildiğini kanıtlamıştır. Makine öğrenimi sistemi tıpta tam koyma alanında uygulandığında, sistemin karşılaması gereken bazı özel gereksinimler vardır. Bu çalışmada, tıpta tam koyma ve tahmin problemlerinde makine öğrenimi kullanımıyla ilgili bazı önemli noktalar ele alındı. Bu çalışmada, Bayesian network yöntemini ve kurallarını öğrenerek, tıpta tam koyma için bir sistem oluşturdum. Hastalıklar ve semptomlar arsındaki olasılık ihtimalleri kullanıldı. Bayesian network nitelikler arasındaki ilişkilerin tüm yapışım sağlayabilir. Kurallar, veri tabanındaki detaylı ve ilginç numuneleri tespit edebilir. Sistem gerçek hayattaki tıp veri tabanlarına uygulanabilir.en_US
dc.description.publishedMonth6
dc.identifier.citationAKILLI, Y. (2003). Medical diagnosis via artificial intelligence. Yayımlanmamış yüksek lisans tezi. Ankara: Çankaya Üniversitesi Fen Bilimleri Enstitüsü.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/548
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMedical Diagnosisen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectBayes Networken_US
dc.subjectBayes Theoremen_US
dc.subjectTıpta Tam Koymaen_US
dc.subjectYapay Zekaen_US
dc.subjectBayes Networken_US
dc.subjectBayes Teoremien_US
dc.titleMedical diagnosis via artificial intelligencetr_TR
dc.titleMedical Diagnosis Via Artificial Intelligenceen_US
dc.title.alternativeYapay Zeka ile Tıpta Tanı Koymaen_US
dc.typeMaster Thesisen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: