Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On a Fractional Operator Combining Proportional and Classical Differintegrals

dc.authorid Fernandez, Arran/0000-0002-1491-1820
dc.authorscopusid 7005872966
dc.authorscopusid 57193722100
dc.authorscopusid 58486733300
dc.authorwosid Akgül, Ali/F-3909-2019
dc.authorwosid Fernandez, Arran/E-7134-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Fernandez, Arran
dc.contributor.author Akgul, Ali
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2021-01-29T11:15:27Z
dc.date.available 2021-01-29T11:15:27Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Fernandez, Arran] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Math, Via Mersin 10, TR-99628 Famagusta, Northern Cyprus, Turkey; [Akgul, Ali] Siirt Univ, Fac Arts & Sci, Dept Math, TR-56100 Siirt, Turkey en_US
dc.description Fernandez, Arran/0000-0002-1491-1820 en_US
dc.description.abstract The Caputo fractional derivative has been one of the most useful operators for modelling non-local behaviours by fractional differential equations. It is defined, for a differentiable function <mml:semantics>f(t)</mml:semantics>, by a fractional integral operator applied to the derivative <mml:semantics>f ' (t)</mml:semantics>. We define a new fractional operator by substituting for this <mml:semantics>f ' (t)</mml:semantics> a more general proportional derivative. This new operator can also be written as a Riemann-Liouville integral of a proportional derivative, or in some important special cases as a linear combination of a Riemann-Liouville integral and a Caputo derivative. We then conduct some analysis of the new definition: constructing its inverse operator and Laplace transform, solving some fractional differential equations using it, and linking it with a recently described bivariate Mittag-Leffler function. en_US
dc.description.publishedMonth 3
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Fernandez, Arran; Akgul, Ali (2020). "On a Fractional Operator Combining Proportional and Classical Differintegrals", Mathematics, Vol. 8, no. 3. en_US
dc.identifier.doi 10.3390/math8030360
dc.identifier.issn 2227-7390
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85082432609
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/math8030360
dc.identifier.volume 8 en_US
dc.identifier.wos WOS:000524085900059
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 276
dc.subject Fractional Integrals en_US
dc.subject Caputo Fractional Derivatives en_US
dc.subject Fractional Differential Equations en_US
dc.subject Bivariate Mittag-Leffler Functions en_US
dc.subject 26A33 en_US
dc.subject 34A08 en_US
dc.title On a Fractional Operator Combining Proportional and Classical Differintegrals tr_TR
dc.title On a Fractional Operator Combining Proportional and Classical Differintegrals en_US
dc.type Article en_US
dc.wos.citedbyCount 214
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
253.15 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: