Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On a Fractional Operator Combining Proportional and Classical Differintegrals

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorFernandez, Arran
dc.contributor.authorAkgül, Ali
dc.contributor.authorID56389tr_TR
dc.date.accessioned2021-01-29T11:15:27Z
dc.date.available2021-01-29T11:15:27Z
dc.date.issued2020
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThe Caputo fractional derivative has been one of the most useful operators for modelling non-local behaviours by fractional differential equations. It is defined, for a differentiable function <mml:semantics>f(t)</mml:semantics>, by a fractional integral operator applied to the derivative <mml:semantics>f ' (t)</mml:semantics>. We define a new fractional operator by substituting for this <mml:semantics>f ' (t)</mml:semantics> a more general proportional derivative. This new operator can also be written as a Riemann-Liouville integral of a proportional derivative, or in some important special cases as a linear combination of a Riemann-Liouville integral and a Caputo derivative. We then conduct some analysis of the new definition: constructing its inverse operator and Laplace transform, solving some fractional differential equations using it, and linking it with a recently described bivariate Mittag-Leffler function.en_US
dc.description.publishedMonth3
dc.identifier.citationBaleanu, Dumitru; Fernandez, Arran; Akgul, Ali (2020). "On a Fractional Operator Combining Proportional and Classical Differintegrals", Mathematics, Vol. 8, no. 3.en_US
dc.identifier.doi10.3390/math8030360
dc.identifier.issn2227-7390
dc.identifier.issue3en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/4513
dc.identifier.volume8en_US
dc.language.isoenen_US
dc.relation.ispartofMathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFractional Integralsen_US
dc.subjectCaputo Fractional Derivativesen_US
dc.subjectFractional Differential Equationsen_US
dc.subjectBivariate Mittag-Leffler Functionsen_US
dc.subject26A33en_US
dc.subject34A08en_US
dc.titleOn a Fractional Operator Combining Proportional and Classical Differintegralstr_TR
dc.titleOn a Fractional Operator Combining Proportional and Classical Differintegralsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
253.15 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: