On a Fractional Operator Combining Proportional and Classical Differintegrals
dc.authorid | Fernandez, Arran/0000-0002-1491-1820 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 57193722100 | |
dc.authorscopusid | 58486733300 | |
dc.authorwosid | Akgül, Ali/F-3909-2019 | |
dc.authorwosid | Fernandez, Arran/E-7134-2019 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Fernandez, Arran | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2021-01-29T11:15:27Z | |
dc.date.available | 2021-01-29T11:15:27Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, R-76900 Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Fernandez, Arran] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Math, Via Mersin 10, TR-99628 Famagusta, Northern Cyprus, Turkey; [Akgul, Ali] Siirt Univ, Fac Arts & Sci, Dept Math, TR-56100 Siirt, Turkey | en_US |
dc.description | Fernandez, Arran/0000-0002-1491-1820 | en_US |
dc.description.abstract | The Caputo fractional derivative has been one of the most useful operators for modelling non-local behaviours by fractional differential equations. It is defined, for a differentiable function <mml:semantics>f(t)</mml:semantics>, by a fractional integral operator applied to the derivative <mml:semantics>f ' (t)</mml:semantics>. We define a new fractional operator by substituting for this <mml:semantics>f ' (t)</mml:semantics> a more general proportional derivative. This new operator can also be written as a Riemann-Liouville integral of a proportional derivative, or in some important special cases as a linear combination of a Riemann-Liouville integral and a Caputo derivative. We then conduct some analysis of the new definition: constructing its inverse operator and Laplace transform, solving some fractional differential equations using it, and linking it with a recently described bivariate Mittag-Leffler function. | en_US |
dc.description.publishedMonth | 3 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Baleanu, Dumitru; Fernandez, Arran; Akgul, Ali (2020). "On a Fractional Operator Combining Proportional and Classical Differintegrals", Mathematics, Vol. 8, no. 3. | en_US |
dc.identifier.doi | 10.3390/math8030360 | |
dc.identifier.issn | 2227-7390 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85082432609 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3390/math8030360 | |
dc.identifier.volume | 8 | en_US |
dc.identifier.wos | WOS:000524085900059 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 276 | |
dc.subject | Fractional Integrals | en_US |
dc.subject | Caputo Fractional Derivatives | en_US |
dc.subject | Fractional Differential Equations | en_US |
dc.subject | Bivariate Mittag-Leffler Functions | en_US |
dc.subject | 26A33 | en_US |
dc.subject | 34A08 | en_US |
dc.title | On a Fractional Operator Combining Proportional and Classical Differintegrals | tr_TR |
dc.title | On a Fractional Operator Combining Proportional and Classical Differintegrals | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 214 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |