Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

M-fractional derivative under interval uncertainty: Theory, properties and applications

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorAhmadian, Ali
dc.contributor.authorAbbasbandy, S.
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorID56389tr_TR
dc.date.accessioned2020-03-18T13:48:18Z
dc.date.available2020-03-18T13:48:18Z
dc.date.issued2018
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn the recent years some efforts were made to propose simple and well-behaved fractional derivatives that inherit the classical properties from the first order derivative. In this regards, the truncated M-fractional derivative for alpha-differentiable function was recently introduced that is a generalization of four fractional derivatives presented in the literature and has their important features. In this research, we aim to generalize this novel and effective derivative under interval uncertainty. The concept of interval truncated M-fractional derivative is introduced and some of the distinguished properties of this interesting fractional derivative such as Rolle's and mean value theorems, are developed for the interval functions. In addition, the existence and uniqueness conditions of the solution for the interval fractional differential equations (IFDEs) based on this new derivative are also investigated. Finally, we present the applicability of this novel interval fractional derivative for IFDEs based on the notion of w-increasing (w-decreasing) by solving a number of test problems. (C) 2018 Elsevier Ltd. All rights reserved.en_US
dc.description.publishedMonth12
dc.identifier.citationSalahshour, S.; Ahmadian, A.; Abbasbandy, S.; et al., "M-fractional derivative under interval uncertainty: Theory, properties and applications", Chaos Solitons & Fractals, Vol. 117, pp. 84-93, (2018).en_US
dc.identifier.doi10.1016/j.chaos.2018.10.002
dc.identifier.endpage93en_US
dc.identifier.issn0960-0779
dc.identifier.startpage84en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/2670
dc.identifier.volume117en_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science LTDen_US
dc.relation.ispartofChaos Solitons & Fractalsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectM-Fractional Derivativeen_US
dc.subjectInterval Arithmeticen_US
dc.subjectInterval-Valued Functionen_US
dc.subjectGeneralized Hukuhara Differentiabilityen_US
dc.subjectTruncated Mittag-Leffler Functionen_US
dc.titleM-fractional derivative under interval uncertainty: Theory, properties and applicationstr_TR
dc.titleM-Fractional Derivative Under Interval Uncertainty: Theory, Properties and Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Baleanu, Dumitru.pdf
Size:
709.6 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: