Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Efficient generalized laguerre-spectral methods for solving multi-term fractional differential equations on the half line

dc.authorscopusid 14319102000
dc.authorscopusid 7005872966
dc.authorscopusid 18041883400
dc.authorwosid Bhrawy, Ali/D-4745-2012
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Bhrawy, A. H.
dc.contributor.author Baleanu, D.
dc.contributor.author Assas, L. M.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-06-02T07:01:13Z
dc.date.available 2020-06-02T07:01:13Z
dc.date.issued 2014
dc.department Çankaya University en_US
dc.department-temp [Bhrawy, A. H.; Assas, L. M.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia; [Bhrawy, A. H.] Beni Suef Univ, Dept Math, Fac Sci, Bani Suwayf, Egypt; [Baleanu, D.] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06810 Ankara, Turkey; [Baleanu, D.] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21413, Saudi Arabia; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Assas, L. M.] Umm Al Qura Univ, Dept Math, Fac Sci, Mecca, Saudi Arabia en_US
dc.description.abstract The main purpose of this paper is to provide an efficient numerical approach for the fractional differential equations (FDEs) on the half line with constant coefficients using a generalized Laguerre tau (GLT) method. The fractional derivatives are described in the Caputo sense. We state and prove a new formula expressing explicitly the derivatives of generalized Laguerre polynomials of any degree and for any fractional order in terms of generalized Laguerre polynomials themselves. We develop also a direct solution technique for solving the linear multi-order FDEs with constant coefficients using a spectral tau method. The spatial approximation with its fractional-order derivatives described in the Caputo sense are based on generalized Laguerre polynomials L-i((alpha))(x) with x is an element of Lambda = (0,infinity) and i denoting the polynomial degree. en_US
dc.description.publishedMonth 5
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Bhrawy, AH.; Baleanu, Dumitru; Assas, LM., "Efficient generalized laguerre-spectral methods for solving multi-term fractional differential equations on the half line" Journal Of Vibration And Control, Vol.20, No.7, pp.973-985, (2014). en_US
dc.identifier.doi 10.1177/1077546313482959
dc.identifier.endpage 985 en_US
dc.identifier.issn 1077-5463
dc.identifier.issn 1741-2986
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-84899103055
dc.identifier.scopusquality Q2
dc.identifier.startpage 973 en_US
dc.identifier.uri https://doi.org/10.1177/1077546313482959
dc.identifier.volume 20 en_US
dc.identifier.wos WOS:000333664000003
dc.identifier.wosquality Q2
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 51
dc.subject Tau Method en_US
dc.subject Generalized Laguerre-Gauss Quadrature en_US
dc.subject Generalized Laguerre Polynomials en_US
dc.subject Multi-Term Fractional Differential Equations en_US
dc.subject Caputo Derivative en_US
dc.title Efficient generalized laguerre-spectral methods for solving multi-term fractional differential equations on the half line tr_TR
dc.title Efficient Generalized Laguerre-Spectral Methods for Solving Multi-Term Fractional Differential Equations on the Half Line en_US
dc.type Article en_US
dc.wos.citedbyCount 39
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: