Periodic Solutions of Some Classes of One Dimensional Non-autonomous Equation
dc.authorid | /0000-0002-5479-2141 | |
dc.authorid | Akram, Saima/0000-0001-6434-7650 | |
dc.authorid | Ghaffar, Abdul/0000-0002-5994-8440 | |
dc.authorscopusid | 55822555100 | |
dc.authorscopusid | 57218918934 | |
dc.authorscopusid | 55637200500 | |
dc.authorscopusid | 57220518546 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 56715663200 | |
dc.authorwosid | Akram, Saima/Aaj-4419-2020 | |
dc.authorwosid | Nawaz, Allah/Aau-9701-2021 | |
dc.authorwosid | Nisar, Kottakkaran/F-7559-2015 | |
dc.authorwosid | Ghaffar, Abdul/Aab-3751-2020 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Akram, Saima | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Nawaz, Allah | |
dc.contributor.author | Yasmin, Nusrat | |
dc.contributor.author | Ghaffar, Abdul | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Nisar, Kottakkaran Sooppy | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-12-02T11:35:58Z | |
dc.date.available | 2022-12-02T11:35:58Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Akram, Saima; Nawaz, Allah; Yasmin, Nusrat] Bahauddin Zakariya Univ, Ctr Adv Studies Pure & Appl Math, Multan, Pakistan; [Ghaffar, Abdul] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam; [Ghaffar, Abdul] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Nisar, Kottakkaran Sooppy] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser, Saudi Arabia | en_US |
dc.description | /0000-0002-5479-2141; Akram, Saima/0000-0001-6434-7650; Ghaffar, Abdul/0000-0002-5994-8440 | en_US |
dc.description.abstract | In this paper, the periodic solutions of a certain one-dimensional differential equation are investigated for the first order cubic non-autonomous equation. The method used here is the bifurcation of periodic solutions from a fine focusz= 0. We aimed to find the maximum number of periodic solutions into which a given solution can bifurcate under perturbation of the coefficients. For classesC(3, 8),C-4,C- 3,C-7,C- 5,C-7,C- 6, eight periodic multiplicities have been found. To investigate the multiplicity >9, the formula for the focal value was not available in the literature. We also succeeded in constructing the formula for eta(10). By implementing our newly developed formula, we are able to get multiplicity ten for classesC(7, 3),C-9,C- 1, which is the highest known to date. A perturbation method has been properly established for making the maximal number of limit cycles for each class. Some examples are also presented to show the implementation of the newly developed method. By considering all of these facts, it can be concluded that the presented methods are new, authentic, and novel. | en_US |
dc.description.publishedMonth | 9 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Akram, Saima...et al. (2020). "Periodic Solutions of Some Classes of One Dimensional Non-autonomous Equation", Frontiers in Physics, Vol. 8. | en_US |
dc.identifier.doi | 10.3389/fphy.2020.00264 | |
dc.identifier.issn | 2296-424X | |
dc.identifier.scopus | 2-s2.0-85090781528 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.3389/fphy.2020.00264 | |
dc.identifier.volume | 8 | en_US |
dc.identifier.wos | WOS:000575981100001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Frontiers Media Sa | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 11 | |
dc.subject | Multiplicity | en_US |
dc.subject | Periodic Solution | en_US |
dc.subject | Non-Autonomous Equation | en_US |
dc.subject | Bifurcation Method | en_US |
dc.subject | Trigonometric Coefficients | en_US |
dc.title | Periodic Solutions of Some Classes of One Dimensional Non-autonomous Equation | tr_TR |
dc.title | Periodic Solutions of Some Classes of One Dimensional Non-Autonomous Equation | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 8 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |