Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Fractional Variational Approach to the Fractional Basset-Type Equation

dc.authorid Garra, Roberto/0000-0003-0260-7095
dc.authorid Petras, Ivo/0000-0002-9250-6986
dc.authorscopusid 7005872966
dc.authorscopusid 42261624000
dc.authorscopusid 23975184900
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Garra, Roberto/Abc-8158-2020
dc.authorwosid Petras, Ivo/B-1393-2009
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Garra, Roberto
dc.contributor.author Petras, Ivo
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-04-28T21:28:58Z
dc.date.available 2020-04-28T21:28:58Z
dc.date.issued 2013
dc.department Çankaya University en_US
dc.department-temp [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia; [Garra, Roberto] Dipartimento Sci Base Applicate Ingn, I-00161 Rome, Italy; [Petras, Ivo] Tech Univ Kosice, Fac BERG, Kosice 04200, Slovakia en_US
dc.description Garra, Roberto/0000-0003-0260-7095; Petras, Ivo/0000-0002-9250-6986 en_US
dc.description.abstract In this paper we discuss an application of fractional variational calculus to the Basset-type fractional equations. It is well known that the unsteady motion of a sphere immersed in a Stokes fluid is described by an integro-differential equation involving derivative of real order. Here we study the inverse problem, i.e. we consider the problem from a Lagrangian point of view in the framework of fractional variational calculus. In this way we find an application of fractional variational methods to a classical physical model, finding a Basset-type fractional equation starting from a Lagrangian depending on derivatives of fractional order. en_US
dc.description.publishedMonth 8
dc.description.sponsorship Slovak Grant Agency for Science [VEGA: 1/0729/12, 1/0497/11, 1/0746/11, APVV-0482-11] en_US
dc.description.sponsorship The work of Ivo Petras was supported in part by the Slovak Grant Agency for Science under grants VEGA: 1/0729/12, 1/0497/11, 1/0746/11, and grant APVV-0482-11. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Baleanu, Dumitru; Garra, R.; Petras, I. "A Fractional Variational Approach to the Fractional Basset-Type Equation", Reports On Mathematical Physics, Vol. 72, No. 1, pp. 57-64, (2013). en_US
dc.identifier.doi 10.1016/S0034-4877(14)60004-5
dc.identifier.endpage 64 en_US
dc.identifier.issn 0034-4877
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-84893437244
dc.identifier.scopusquality Q3
dc.identifier.startpage 57 en_US
dc.identifier.uri https://doi.org/10.1016/S0034-4877(14)60004-5
dc.identifier.volume 72 en_US
dc.identifier.wos WOS:000325386900004
dc.identifier.wosquality Q4
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 17
dc.subject Basset Equation en_US
dc.subject Fractional Calculus en_US
dc.subject Calculus Of Variations en_US
dc.title A Fractional Variational Approach to the Fractional Basset-Type Equation tr_TR
dc.title A Fractional Variational Approach To the Fractional Basset-Type Equation en_US
dc.type Article en_US
dc.wos.citedbyCount 15
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: