Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Entropy-Functional-Based Online Adaptive Decision Fusion Framework With Application to Wildfire Detection in Video

dc.contributor.authorGünay, Osman
dc.contributor.authorTöreyin, Behçet Uğur
dc.contributor.authorKöse, Kıvanç
dc.contributor.authorÇetin, Enis
dc.contributor.authorID19325tr_TR
dc.date.accessioned2017-02-28T13:22:54Z
dc.date.available2017-02-28T13:22:54Z
dc.date.issued2012
dc.departmentÇankaya Üniversitesi, Mühendislik Fakültesi, Elektronik ve Haberleşme Mühendisliğien_US
dc.description.abstractIn this paper, an entropy-functional-based online adaptive decision fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several subalgorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular subalgorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing entropic projections onto convex sets describing subalgorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system was developed to evaluate the performance of the decision fusion algorithm. In this case, image data arrive sequentially, and the oracle is the security guard of the forest lookout tower, verifying the decision of the combined algorithm. The simulation results are presented.en_US
dc.description.publishedMonth5
dc.identifier.citationGünay, O...et al. (2012). Entropy-Functional-Based Online Adaptive Decision Fusion Framework With Application to Wildfire Detection in Video. IEEE Transactions On Image Processing, 21(5), 2853-2865. http://dx.doi.org/10.1109/TIP.2012.2183141en_US
dc.identifier.doi10.1109/TIP.2012.2183141
dc.identifier.endpage2865en_US
dc.identifier.issn1057-7149
dc.identifier.issue5en_US
dc.identifier.startpage2853en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/1341
dc.identifier.volume21en_US
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Transactions On Image Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectActive Learningen_US
dc.subjectDecision Fusionen_US
dc.subjectEntropy Maximizationen_US
dc.subjectOnline Learningen_US
dc.subjectProjections Onto Convex Setsen_US
dc.subjectWildfire Detection Using Videoen_US
dc.titleEntropy-Functional-Based Online Adaptive Decision Fusion Framework With Application to Wildfire Detection in Videotr_TR
dc.titleEntropy-Functional Online Adaptive Decision Fusion Framework With Application To Wildfire Detection in Videoen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: