Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An efficient numerical scheme based on Lucas polynomials for the study of multidimensional Burgers-type equations

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

We propose a polynomial-based numerical scheme for solving some important nonlinear partial differential equations (PDEs). In the proposed technique, the temporal part is discretized by finite difference method together with theta-weighted scheme. Then, for the approximation of spatial part of unknown function and its spatial derivatives, we use a mixed approach based on Lucas and Fibonacci polynomials. With the help of these approximations, we transform the nonlinear partial differential equation to a system of algebraic equations, which can be easily handled. We test the performance of the method on the generalized Burgers-Huxley and Burgers-Fisher equations, and one- and two-dimensional coupled Burgers equations. To compare the efficiency and accuracy of the proposed scheme, we computed L-infinity, L-2, and root mean square (RMS) error norms. Computations validate that the proposed method produces better results than other numerical methods. We also discussed and confirmed the stability of the technique.

Description

Keywords

Lucas Polynomials, Fibonacci Polynomials, Finite Differences, Stability Analysis

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Ali, Ihteram...et al. (2021). "An efficient numerical scheme based on Lucas polynomials for the study of multidimensional Burgers-type equations", Advances in Difference Equations, Vol. 2021, No. 1.

WoS Q

Scopus Q

Source

Advances in Difference Equations

Volume

2021

Issue

1

Start Page

End Page