The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations
dc.authorid | Hajipour, Mojtaba/0000-0002-7223-9577 | |
dc.authorscopusid | 57553107600 | |
dc.authorscopusid | 36455808200 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Hajipour, Mojtaba/E-1417-2015 | |
dc.contributor.author | Kheirkhah, Farnaz | |
dc.contributor.author | Hajipour, Mojtaba | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-05-14T08:06:23Z | |
dc.date.available | 2024-05-14T08:06:23Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Kheirkhah, Farnaz; Hajipour, Mojtaba] Sahand Univ Technol, Dept Math, Box 51335-1996, Tabriz, Iran; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R76900, Bucharest, Romania | en_US |
dc.description | Hajipour, Mojtaba/0000-0002-7223-9577 | en_US |
dc.description.abstract | This paper is concerned with a highly accurate numerical scheme for a class of one and two-dimensional time-fractional advection-reaction-subdiffusion equations of variable order alpha(x, t) is an element of (0, 1). For the spatial and temporal discretization of the equation, a fourth order compact finite difference operator and a third-order weighted-shifted Grunwald formula are applied, respectively. The stability and convergence of the present scheme are addressed. Some extensive numerical experiments are performed to confirm the theoretical analysis and high-accuracy of this novel scheme. Comparisons are also made with the available schemes in the literature. (c) 2022 IMACS. Published by Elsevier B.V. All rights reserved. | en_US |
dc.description.publishedMonth | 8 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Kheirkhah, Farnaz; Hajipour, Mojtaba; Baleanu, D. (2022). "The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations", Applied Numerical Mathematics, Vol.178, pp.25-40. | en_US |
dc.identifier.doi | 10.1016/j.apnum.2022.03.016 | |
dc.identifier.endpage | 40 | en_US |
dc.identifier.issn | 0168-9274 | |
dc.identifier.issn | 1873-5460 | |
dc.identifier.scopus | 2-s2.0-85127208702 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 25 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.apnum.2022.03.016 | |
dc.identifier.volume | 178 | en_US |
dc.identifier.wos | WOS:000790509900002 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 15 | |
dc.subject | Variable-Order Time-Fractional Derivative | en_US |
dc.subject | Grunwald Formula | en_US |
dc.subject | Compact Finite Difference | en_US |
dc.subject | Reaction-Subdiffusion Problem | en_US |
dc.title | The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations | tr_TR |
dc.title | The Performance of a Numerical Scheme on the Variable-Order Time-Fractional Advection-Reaction Equations | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 15 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: