Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A High-Accuracy Vieta-Fibonacci Collocation Scheme To Solve Linear Time-Fractional Telegraph Equations

dc.authorid Salahshour, Soheil/0000-0003-1390-3551
dc.authorid Hosseini, Kamyar/0000-0001-7137-1456
dc.authorid Sadri Khatouni, Khadijeh/0000-0001-6083-9527
dc.authorscopusid 56685323200
dc.authorscopusid 36903183800
dc.authorscopusid 7005872966
dc.authorscopusid 23028598900
dc.authorwosid Hosseini, Kamyar/J-7345-2019
dc.authorwosid Salahshour, Soheil/K-4817-2019
dc.authorwosid Sadri, Khadijeh/Jwa-5374-2024
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Hosseini, Kamyar
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Salahshour, Soheil
dc.contributor.other Matematik
dc.date.accessioned 2025-05-11T17:19:50Z
dc.date.available 2025-05-11T17:19:50Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Sadri, Khadijeh] Ahrar Inst Technol & Higher Educ, Fac Engn, Dept Mech Engn, Rasht, Iran; [Hosseini, Kamyar; Salahshour, Soheil] Near East Univ TRNC, Dept Math, Mersin, Turkey; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung, Taiwan; [Salahshour, Soheil] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey en_US
dc.description Salahshour, Soheil/0000-0003-1390-3551; Hosseini, Kamyar/0000-0001-7137-1456; Sadri Khatouni, Khadijeh/0000-0001-6083-9527 en_US
dc.description.abstract The vital target of the current work is to construct two-variable Vieta-Fibonacci polynomials which are coupled with a matrix collocation method to solve the time-fractional telegraph equations. The emerged fractional derivative operators in these equations are in the Caputo sense. Telegraph equations arise in the fields of thermodynamics, hydrology, signal analysis, and diffusion process of chemicals. The orthogonality of derivatives of shifted Vieta-Fibonacci polynomials is proved. A bound of the approximation error is ascertained in a Vieta-Fibonacci-weighted Sobolev space that admits increasing the number of terms of the series solution leads to the decrease of the approximation error. The proposed scheme is implemented on four illustrated examples and obtained numerical results are compared with those reported in some existing research works. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1080/17455030.2022.2135789
dc.identifier.issn 1745-5030
dc.identifier.issn 1745-5049
dc.identifier.scopus 2-s2.0-85141191255
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1080/17455030.2022.2135789
dc.identifier.uri https://hdl.handle.net/20.500.12416/9688
dc.identifier.wos WOS:000871878400001
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 11
dc.subject Time-Fractional Telegraph Equation en_US
dc.subject Shifted Vieta-Fibonacci Polynomials en_US
dc.subject Caputo Fractional Derivative en_US
dc.subject Riemann-Liouville Fractional Integral en_US
dc.subject Error Bound en_US
dc.title A High-Accuracy Vieta-Fibonacci Collocation Scheme To Solve Linear Time-Fractional Telegraph Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files