Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Atangana, Abdon/Aae-4779-2021 | |
dc.contributor.author | Atangana, Abdon | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-05-20T13:07:48Z | |
dc.date.available | 2020-05-20T13:07:48Z | |
dc.date.issued | 2014 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Atangana, Abdon] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa; [Baleanu, Dumitru] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21413, Saudi Arabia; [Baleanu, Dumitru] Cankara Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Bucharest, Romania | en_US |
dc.description.abstract | The model describing the mitigation of contamination through ventilation inside a moving waterway polluted via dispersed bases together with connected reduction of liquefied oxygen was investigated within the scope of fractional derivatives. The steady-state cases were investigated using some Caputo derivatives properties. The steady-state solutions in presence and absence of the dispersion were derived in terms of the Mittag-Leffler function. In the case of non-steady state, we derived the solution of the first equation in terms of the a-stable error function via the Laplace transform method. To solve the second equation, we constructed the fractional Green function via the Laplace, Fourier and Mellin transforms. The fractional Green function was expressed by mean of the H-function. Particularly, we presented the selected numerical results a function of distance and a. (C) 2014 Elsevier Ltd. All rights reserved. | en_US |
dc.description.publishedMonth | 12 | |
dc.description.sponsorship | Claude Leon Foundation | en_US |
dc.description.sponsorship | Abdon Atangana would like to thank the Claude Leon Foundation for their financial support. The authors will like to thank both editor and reviewers for their valuable suggestions. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus By:Atangana, A (Atangana, Abdon)[ 1 ] ; Baleanu, D (Baleanu, Dumitru)[ 2,3,4 ] | en_US |
dc.identifier.doi | 10.1016/j.ijnonlinmec.2014.09.010 | |
dc.identifier.endpage | 284 | en_US |
dc.identifier.issn | 0020-7462 | |
dc.identifier.issn | 1878-5638 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 278 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.ijnonlinmec.2014.09.010 | |
dc.identifier.volume | 67 | en_US |
dc.identifier.wos | WOS:000347022100030 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Rivers Pollution | en_US |
dc.subject | Steady State | en_US |
dc.subject | Fourier | en_US |
dc.subject | Laplace And Mellin Transform Operators | en_US |
dc.subject | Mittag-Leffler Function And H-Function | en_US |
dc.subject | Fractional Green Function | en_US |
dc.title | Modelling the advancement of the impurities and the melted oxygen concentration within the scope of fractional calculus | tr_TR |
dc.title | Modelling the Advancement of the Impurities and the Melted Oxygen Concentration Within the Scope of Fractional Calculus | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 14 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: