Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model

dc.authorscopusid 57201196587
dc.authorscopusid 56106981700
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Din, Anwarud/Caj-3276-2022
dc.contributor.author Din, Anwarud
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Khan, Amir
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-01-16T07:53:52Z
dc.date.available 2023-01-16T07:53:52Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Din, Anwarud] Univ Malakand KPK, Dept Math, Lower Dir, Pakistan; [Khan, Amir] Univ Swat, Dept Math & Stat, Swat, Khyber Pakhtunk, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Art & Sci Fac, Dept Math & Comp Sci, TR-06300 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Dept Math, Bucharest, Romania; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan en_US
dc.description.abstract Similar to other epidemics, the novel coronavirus (COVID-19) spread very fast and infected almost two hundreds countries around the globe since December 2019. The unique characteristics of the COVID-19 include its ability of faster expansion through freely existed viruses or air molecules in the atmosphere. Assuming that the spread of virus follows a random process instead of deterministic. The continuous time Markov Chain (CTMC) through stochastic model approach has been utilized for predicting the impending states with the use of random variables. The proposed study is devoted to investigate a model consist of three exclusive compartments. The first class includes white nose based transmission rate (termed as susceptible individuals), the second one pertains to the infected population having the same perturbation occurrence and the last one isolated (quarantined) individuals. We discuss the model's extinction as well as the stationary distribution in order to derive the the sufficient criterion for the persistence and disease' extinction. Lastly, the numerical simulation is executed for supporting the theoretical findings. (C) 2020 Published by Elsevier Ltd. en_US
dc.description.publishedMonth 10
dc.description.sponsorship HEC en_US
dc.description.sponsorship This work was supported by the HEC. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Din, Anwarud; Khan, Amir; Baleanu, Dumitru (2020). "Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model", Chaos, Solitons and Fractals, Vol. 139. en_US
dc.identifier.doi 10.1016/j.chaos.2020.110036
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.pmid 32834596
dc.identifier.scopus 2-s2.0-85087202895
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.chaos.2020.110036
dc.identifier.volume 139 en_US
dc.identifier.wos WOS:000588433800042
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 104
dc.subject Stochastic Epidemic Model en_US
dc.subject Covid-19 en_US
dc.subject Threshold Value en_US
dc.subject Global Stability en_US
dc.subject Real Data en_US
dc.subject Stationary Distribution en_US
dc.title Stationary distribution and extinction of stochastic coronavirus (COVID-19) epidemic model tr_TR
dc.title Stationary Distribution and Extinction of Stochastic Coronavirus (covid-19) Epidemic Model en_US
dc.type Article en_US
dc.wos.citedbyCount 96
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
697.81 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: