A Discussion On the Existence of Best Proximity Points That Belong to the Zero Set
dc.authorid | Abbas, Mujahid/0000-0001-5528-1207 | |
dc.authorscopusid | 16678995500 | |
dc.authorscopusid | 56232278500 | |
dc.authorscopusid | 57215652337 | |
dc.authorwosid | Abbas, Mujahid/Itu-7809-2023 | |
dc.authorwosid | Karapinar, Erdal/H-3177-2011 | |
dc.contributor.author | Karapinar, Erdal | |
dc.contributor.author | Karapınar, Erdal | |
dc.contributor.author | Abbas, Mujahid | |
dc.contributor.author | Farooq, Sadia | |
dc.contributor.authorID | 19184 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2020-04-27T23:59:24Z | |
dc.date.available | 2020-04-27T23:59:24Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Karapinar, Erdal] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan; [Karapinar, Erdal] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey; [Abbas, Mujahid] Govt Coll Univ, Dept Math, Lahore 54000, Pakistan; [Abbas, Mujahid] Univ Pretoria, Dept Math & Appl Math, Lynnwood Rd, ZA-0002 Pretoria, South Africa; [Farooq, Sadia] Univ Management & Technol, Dept Math, Lahore 54782, Pakistan | en_US |
dc.description | Abbas, Mujahid/0000-0001-5528-1207 | en_US |
dc.description.abstract | In this paper, we investigate the existence of best proximity points that belong to the zero set for the alpha p -admissible weak (F,phi) -proximal contraction in the setting of M-metric spaces. For this purpose, we establish phi -best proximity point results for such mappings in the setting of a complete M-metric space. Some examples are also presented to support the concepts and results proved herein. Our results extend, improve and generalize several comparable results on the topic in the related literature. | en_US |
dc.description.publishedMonth | 3 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Karapınar, Erdal; Abbas, Mujahid; Farooq, Sadia, "A Discussion On the Existence of Best Proximity Points That Belong to the Zero Set", Axioms, Vol. 9, No. 1, (2020). | en_US |
dc.identifier.doi | 10.3390/axioms9010019 | |
dc.identifier.issn | 2075-1680 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85081606868 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://doi.org/10.3390/axioms9010019 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:000523486100022 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Mdpi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 10 | |
dc.subject | M-Metric Space | en_US |
dc.subject | Proximal Alpha(P)-Admissible | en_US |
dc.subject | Alpha(P)-Admissible Weak (F | en_US |
dc.subject | Phi)-Proximal Contraction | en_US |
dc.subject | G-Proximal Graphic Contraction | en_US |
dc.subject | Phi-Best Proximity Point | en_US |
dc.title | A Discussion On the Existence of Best Proximity Points That Belong to the Zero Set | tr_TR |
dc.title | A Discussion on the Existence of Best Proximity Points That Belong To the Zero Set | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 9 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8ceeddcf-e8f8-49b5-9561-fae8cd8796d2 | |
relation.isAuthorOfPublication.latestForDiscovery | 8ceeddcf-e8f8-49b5-9561-fae8cd8796d2 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |