Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Graph-Cut-based Compression Algorithm for Compressed-Sensed Image Acquisition

dc.authorid Toreyin, Behcet Ugur/0000-0003-4406-2783
dc.authorscopusid 56246456800
dc.authorscopusid 56246733200
dc.authorscopusid 12783726500
dc.authorscopusid 9249500700
dc.authorwosid Toreyin, Behcet Ugur/A-6780-2012
dc.contributor.author Alaydin, Julide Gulen
dc.contributor.author Töreyin, Behçet Uğur
dc.contributor.author Gulen, Seden Hazal
dc.contributor.author Trocan, Maria
dc.contributor.author Toreyin, Behcet Ugur
dc.contributor.authorID 19325 tr_TR
dc.contributor.other Elektrik-Elektronik Mühendisliği
dc.date.accessioned 2020-04-19T23:50:53Z
dc.date.available 2020-04-19T23:50:53Z
dc.date.issued 2014
dc.department Çankaya University en_US
dc.department-temp [Alaydin, Julide Gulen; Gulen, Seden Hazal; Toreyin, Behcet Ugur] Cankaya Univ, TR-06810 Ankara, Turkey; [Trocan, Maria] Inst Super Elect Paris, F-75006 Paris, France en_US
dc.description Toreyin, Behcet Ugur/0000-0003-4406-2783 en_US
dc.description.abstract The purpose of the paper is to find the best quantizer allocation for compressed-sensed acquired images, by using a graph-cut quantizer allocation method. The compressed sensed acquisition is realized in a block-based manner, using a random projection matrix, and on the obtained block measurements a graph-cut-based quantizer allocation method is applied, in order to further reduce the bitrate associated to the measurements. Finally, the quantized measurements are reconstructed using a Smooth Projected Landweber recovery method. The proposed compression method for compressed sensed acquisition shows better results when compared to JPEG2000. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.doi 10.1109/SIU.2014.6830726
dc.identifier.endpage 2313 en_US
dc.identifier.isbn 9781479948741
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-84903788902
dc.identifier.scopusquality N/A
dc.identifier.startpage 2310 en_US
dc.identifier.uri https://doi.org/10.1109/SIU.2014.6830726
dc.identifier.wos WOS:000356351400555
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Ieee en_US
dc.relation.ispartof 22nd IEEE Signal Processing and Communications Applications Conference (SIU) -- APR 23-25, 2014 -- Karadeniz Teknik Univ, Trabzon, TURKEY en_US
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.title Graph-Cut-based Compression Algorithm for Compressed-Sensed Image Acquisition tr_TR
dc.title Graph-Cut Compression Algorithm for Compressed-Sensed Image Acquisition en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication 31d067df-3d94-4058-a635-943b70f82ea4
relation.isAuthorOfPublication.latestForDiscovery 31d067df-3d94-4058-a635-943b70f82ea4
relation.isOrgUnitOfPublication a8b0a996-7c01-41a1-85be-843ba585ef45
relation.isOrgUnitOfPublication.latestForDiscovery a8b0a996-7c01-41a1-85be-843ba585ef45

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: