Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Analysis of positive measure reducibility for quasi-periodic linear systems under Brjuno-Rüssmann condition

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Amer inst Mathematical Sciences-aims

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Matematik
Bölümümüz, bilim ve sanayi için gerekli modern bilgilere sahip iş gücünü üretmeyi hedeflemektedir.

Journal Issue

Events

Abstract

In this article, we discuss the positive measure reducibility for quasi-periodic linear systems close to a constant which is defined as: dx/dt = (A(lambda) + Q(phi, lambda))x, (phi) over dot = omega, where omega is a Brjuno vector and parameter lambda is an element of (a, b). The result is proved by using the KAM method, Brjuno-Russmann condition, and non-degeneracy condition.

Description

Keywords

Quasi-Periodic, Brjuno-Russmann Condition, Reducibility, Kam Method

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Afzal, Muhammad;...et.al. (2022). "Analysis of positive measure reducibility for quasi-periodic linear systems under Brjuno-Rüssmann condition", AIMS Mathematics, Vol.7, No.5, pp.9373-9388.

WoS Q

Q1

Scopus Q

Q1

Source

Volume

7

Issue

5

Start Page

9373

End Page

9388