Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Predicting Stability Factors for Rotational Failures in Earth Slopes and Embankments Using Artificial Intelligence Techniques

dc.contributor.author Cemiloglu, Ahmed
dc.contributor.author Cao, Yingying
dc.contributor.author Sabonchi, Arkan K. S.
dc.contributor.author Nanehkaran, Yaser A.
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-11T17:03:12Z
dc.date.available 2025-05-11T17:03:12Z
dc.date.issued 2024
dc.description Cemiloglu, Ahmed/0000-0003-2633-0924; Sabonchi, Arkan Kh Shakr/0000-0001-9970-1090; Ahangari Nanehkaran, Yaser/0000-0002-8055-3195 en_US
dc.description.abstract This study focuses on slope stability analysis, a critical process for understanding the conditions, durability, mass properties, and failure mechanisms of slopes. The research specifically addresses rotational-type failure, the primary instability mechanism affecting earth slopes. Identifying and understanding key factors such as slope height, slope angle, density, cohesion, friction, water pore pressure, and tensile cracks are essential for effective stabilization strategies. The objective of this study is to develop accurate predictive models for slope stability analysis using advanced intelligent techniques, including data mining mapping and complex decision tree regression (DTR). The models were validated using performance metrics such as mean absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), and the coefficient of determination (R-2). Additionally, overall accuracy was assessed using a confusion matrix. The predictive model was tested on a dataset of 120 slope cases, achieving an accuracy of approximately 91.07% with DTR. The error rates for the training set were MAE = 0.1242, MSE = 0.1722, and RMSE = 0.1098, demonstrating the model's capability to effectively analyze and predict slope stability in earth slopes and embankments. The study concludes that these intelligent techniques offer a reliable approach for stability analysis, contributing to safer and more efficient slope management. en_US
dc.description.sponsorship National Nature Sciences Foundation of China [42250410321] en_US
dc.description.sponsorship This research was funded by the National Nature Sciences Foundation of China (Grant No. 42250410321). en_US
dc.identifier.doi 10.1515/geo-2022-0730
dc.identifier.issn 2391-5447
dc.identifier.scopus 2-s2.0-85213040942
dc.identifier.uri https://doi.org/10.1515/geo-2022-0730
dc.identifier.uri https://hdl.handle.net/20.500.12416/9583
dc.language.iso en en_US
dc.publisher de Gruyter Poland Sp Z O O en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Slope Stability en_US
dc.subject Earth-Slopes en_US
dc.subject Rotational-Type Failure en_US
dc.subject Ai Algorithms en_US
dc.subject Machine Learning en_US
dc.title Predicting Stability Factors for Rotational Failures in Earth Slopes and Embankments Using Artificial Intelligence Techniques en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Cemiloglu, Ahmed/0000-0003-2633-0924
gdc.author.id Sabonchi, Arkan Kh Shakr/0000-0001-9970-1090
gdc.author.id Ahangari Nanehkaran, Yaser/0000-0002-8055-3195
gdc.author.scopusid 58513037700
gdc.author.scopusid 59485981400
gdc.author.scopusid 57200159134
gdc.author.scopusid 57211004694
gdc.author.wosid Nanehkaran, Yaser/Aan-6150-2021
gdc.author.wosid Cemiloğlu, Ahmed/Hjz-4981-2023
gdc.author.wosid Cao, Yingying/Aar-9029-2021
gdc.author.wosid Sabonchi, Arkan Kh Shakr/Aax-8403-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Cemiloglu, Ahmed; Cao, Yingying; Nanehkaran, Yaser A.] Yancheng Teachers Univ, Sch Informat Engn, Yancheng 224002, Jiangsu, Peoples R China; [Nanehkaran, Yaser A.] Cankaya Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-06790 Ankara, Turkiye; [Sabonchi, Arkan K. S.] Imam Jaafar Al Sadiq Univ, Tech Coll, Baghdad 10011, Iraq en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 16 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4404864609
gdc.identifier.wos WOS:001366520900001
gdc.openalex.fwci 2.80421644
gdc.openalex.normalizedpercentile 0.88
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 0b9123e4-4136-493b-9ffd-be856af2cdb1

Files