Predicting Stability Factors for Rotational Failures in Earth Slopes and Embankments Using Artificial Intelligence Techniques
| dc.contributor.author | Cemiloglu, Ahmed | |
| dc.contributor.author | Cao, Yingying | |
| dc.contributor.author | Sabonchi, Arkan K. S. | |
| dc.contributor.author | Nanehkaran, Yaser A. | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2025-05-11T17:03:12Z | |
| dc.date.available | 2025-05-11T17:03:12Z | |
| dc.date.issued | 2024 | |
| dc.description | Cemiloglu, Ahmed/0000-0003-2633-0924; Sabonchi, Arkan Kh Shakr/0000-0001-9970-1090; Ahangari Nanehkaran, Yaser/0000-0002-8055-3195 | en_US |
| dc.description.abstract | This study focuses on slope stability analysis, a critical process for understanding the conditions, durability, mass properties, and failure mechanisms of slopes. The research specifically addresses rotational-type failure, the primary instability mechanism affecting earth slopes. Identifying and understanding key factors such as slope height, slope angle, density, cohesion, friction, water pore pressure, and tensile cracks are essential for effective stabilization strategies. The objective of this study is to develop accurate predictive models for slope stability analysis using advanced intelligent techniques, including data mining mapping and complex decision tree regression (DTR). The models were validated using performance metrics such as mean absolute error (MAE), mean squared error (MSE), root mean square error (RMSE), and the coefficient of determination (R-2). Additionally, overall accuracy was assessed using a confusion matrix. The predictive model was tested on a dataset of 120 slope cases, achieving an accuracy of approximately 91.07% with DTR. The error rates for the training set were MAE = 0.1242, MSE = 0.1722, and RMSE = 0.1098, demonstrating the model's capability to effectively analyze and predict slope stability in earth slopes and embankments. The study concludes that these intelligent techniques offer a reliable approach for stability analysis, contributing to safer and more efficient slope management. | en_US |
| dc.description.sponsorship | National Nature Sciences Foundation of China [42250410321] | en_US |
| dc.description.sponsorship | This research was funded by the National Nature Sciences Foundation of China (Grant No. 42250410321). | en_US |
| dc.identifier.doi | 10.1515/geo-2022-0730 | |
| dc.identifier.issn | 2391-5447 | |
| dc.identifier.scopus | 2-s2.0-85213040942 | |
| dc.identifier.uri | https://doi.org/10.1515/geo-2022-0730 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12416/9583 | |
| dc.language.iso | en | en_US |
| dc.publisher | de Gruyter Poland Sp Z O O | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Slope Stability | en_US |
| dc.subject | Earth-Slopes | en_US |
| dc.subject | Rotational-Type Failure | en_US |
| dc.subject | Ai Algorithms | en_US |
| dc.subject | Machine Learning | en_US |
| dc.title | Predicting Stability Factors for Rotational Failures in Earth Slopes and Embankments Using Artificial Intelligence Techniques | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Cemiloglu, Ahmed/0000-0003-2633-0924 | |
| gdc.author.id | Sabonchi, Arkan Kh Shakr/0000-0001-9970-1090 | |
| gdc.author.id | Ahangari Nanehkaran, Yaser/0000-0002-8055-3195 | |
| gdc.author.scopusid | 58513037700 | |
| gdc.author.scopusid | 59485981400 | |
| gdc.author.scopusid | 57200159134 | |
| gdc.author.scopusid | 57211004694 | |
| gdc.author.wosid | Nanehkaran, Yaser/Aan-6150-2021 | |
| gdc.author.wosid | Cemiloğlu, Ahmed/Hjz-4981-2023 | |
| gdc.author.wosid | Cao, Yingying/Aar-9029-2021 | |
| gdc.author.wosid | Sabonchi, Arkan Kh Shakr/Aax-8403-2020 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Cemiloglu, Ahmed; Cao, Yingying; Nanehkaran, Yaser A.] Yancheng Teachers Univ, Sch Informat Engn, Yancheng 224002, Jiangsu, Peoples R China; [Nanehkaran, Yaser A.] Cankaya Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, TR-06790 Ankara, Turkiye; [Sabonchi, Arkan K. S.] Imam Jaafar Al Sadiq Univ, Tech Coll, Baghdad 10011, Iraq | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 16 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W4404864609 | |
| gdc.identifier.wos | WOS:001366520900001 | |
| gdc.openalex.fwci | 2.80421644 | |
| gdc.openalex.normalizedpercentile | 0.88 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 7 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.wos.citedcount | 2 | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 0b9123e4-4136-493b-9ffd-be856af2cdb1 |