Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Finite-time stabilization of a perturbed chaotic finance model

dc.authorid Ahmad, Israr/0000-0002-3053-1158
dc.authorid Shafiq, Muhammad/0000-0001-8589-8830
dc.authorid Ouannas, Adel/0000-0001-9611-2047
dc.authorscopusid 57212422462
dc.authorscopusid 56135753700
dc.authorscopusid 56986744500
dc.authorscopusid 36998895200
dc.authorscopusid 7005872966
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Ahmad, Israr/Aac-1537-2020
dc.authorwosid Ouannas, Adel/Aae-2213-2022
dc.authorwosid Shafiq, Muhammad/S-4791-2019
dc.contributor.author Ahmad, Israr
dc.contributor.author Ouannas, Adel
dc.contributor.author Shafiq, Muhammad
dc.contributor.author Pham, Viet-Thanh
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-04-27T13:35:26Z
dc.date.available 2022-04-27T13:35:26Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Ahmad, Israr] Univ Technol & Appl Sci, Dept Gen Requirements, Coll Appl Sci, Nizwa, Oman; [Ouannas, Adel] Univ Larbi Ben Mhidi, Dept Math & Comp Sci, Oum El Bouaghi, Algeria; [Shafiq, Muhammad] Sultan Qaboos Univ, Dept Elect & Comp Engn, Muscat, Oman; [Pham, Viet-Thanh] Ton Duc Thang Univ, Fac Elect & Elect Engn, Nonlinear Syst & Applicat, Ho Chi Minh City, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] China Med Univ Taichung, Taichung, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
dc.description Ahmad, Israr/0000-0002-3053-1158; Shafiq, Muhammad/0000-0001-8589-8830; Ouannas, Adel/0000-0001-9611-2047 en_US
dc.description.abstract Introduction: Robust, stable financial systems significantly improve the growth of an economic system. The stabilization of financial systems poses the following challenges. The state variables' trajectories (i) lie outside the basin of attraction, (ii) have high oscillations, and (iii) converge to the equilibrium state slowly. Objectives: This paper aims to design a controller that develops a robust, stable financial closed-loop system to address the challenges above by (i) attracting all state variables to the origin, (ii) reducing the oscillations, and (iii) increasing the gradient of the convergence. Methods: This paper proposes a detailed mathematical analysis of the steady-state stability, dissipative characteristics, the Lyapunov exponents, bifurcation phenomena, and Poincare maps of chaotic financial dynamic systems. The proposed controller does not cancel the nonlinear terms appearing in the closed-loop. This structure is robust to the smoothly varying system parameters and improves closedloop efficiency. Further, the controller eradicates the effects of inevitable exogenous disturbances and accomplishes a faster, oscillation-free convergence of the perturbed state variables to the desired steady-state within a finite time. The Lyapunov stability analysis proves the closed-loop global stability. The paper also discusses finite-time stability analysis and describes the controller parameters' effects on the convergence rates. Computer-based simulations endorse the theoretical findings, and the comparative study highlights the benefits. Results: Theoretical analysis proofs and computer simulation results verify that the proposed controller compels the state trajectories, including trajectories outside the basin of attraction, to the origin within finite time without oscillations while being faster than the other controllers discussed in the comparative study section. Conclusions: This article proposes a novel robust, nonlinear finite-time controller for the robust stabilization of the chaotic finance model. It provides an in-depth analysis based on the Lyapunov stability theory and computer simulation results to verify the robust convergence of the state variables to the origin. (C) 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. en_US
dc.description.publishedMonth 9
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ahmad, Israr...et al. (2021). "Finite-time stabilization of a perturbed chaotic finance model", Journal of Advanced Research, vol. 32, pp. 1-14. en_US
dc.identifier.doi 10.1016/j.jare.2021.06.013
dc.identifier.endpage 14 en_US
dc.identifier.issn 2090-1232
dc.identifier.issn 2090-1224
dc.identifier.pmid 34484821
dc.identifier.scopus 2-s2.0-85108565921
dc.identifier.scopusquality Q1
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.1016/j.jare.2021.06.013
dc.identifier.volume 32 en_US
dc.identifier.wos WOS:000691466300001
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 32
dc.subject Chaotic Finance System en_US
dc.subject Nonlinear Control en_US
dc.subject Chaos Suppression en_US
dc.subject Lyapunov Function en_US
dc.subject Finite-Time Stability en_US
dc.title Finite-time stabilization of a perturbed chaotic finance model tr_TR
dc.title Finite-Time Stabilization of a Perturbed Chaotic Finance Model en_US
dc.type Article en_US
dc.wos.citedbyCount 31
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
2.01 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: