A Mathematical Theoretical Study of Atangana-Baleanu Fractional Burgers’ Equations
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 56020904800 | |
dc.authorscopusid | 57390907700 | |
dc.authorscopusid | 55467157900 | |
dc.authorscopusid | 57192576535 | |
dc.authorscopusid | 57206692659 | |
dc.authorscopusid | 57964601700 | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.author | Jassim, H.K. | |
dc.contributor.author | Ahmed, H. | |
dc.contributor.author | Singh, J. | |
dc.contributor.author | Kumar, D. | |
dc.contributor.author | Shah, R. | |
dc.contributor.author | Jabbar, K.A. | |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2025-05-13T11:56:42Z | |
dc.date.available | 2025-05-13T11:56:42Z | |
dc.date.issued | 2024 | |
dc.department | Çankaya University | en_US |
dc.department-temp | Baleanu D., Department of Mathematics, Çankaya University, Ankara, Turkey, Institute of Space Sciences, Magurele-Bucharest, Romania; Jassim H.K., Department of Mathematics, University of Thi-Qar, Thi-Qar, Iraq; Ahmed H., Section of Mathematics, International Telematic University Uninettuno, Carso Vittorio, Emanuel ell, 39, Roma, 00186, Italy; Singh J., Department of Mathematics, JECRC University, Rajasthan, Jaipur, India; Kumar D., Department of Mathematics, University of Rajasthan, Rajasthan, Jaipur, 302004, India; Shah R., Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan; Alzaki L.K., Department of Mathematics, University of Thi-Qar, Thi-Qar, Iraq; Zayir M.Y., Department of Mathematics, University of Thi-Qar, Thi-Qar, Iraq; Cherif M.H., Laboratory of complex systems, Hight School of Electrical and Energetics Engineering of Oran (ESGEE-Oran), Algeria; Hussein M.A., Scientific Research Center, Al-Ayen Iraqi University, Nasiriyah, 64001, Iraq; Jabbar K.A., College of Technical Engineering, National University of Science and Technology, Thi-Qar, Iraq | en_US |
dc.description.abstract | In this paper, the Burgers’ equations using the fractional derivative of Atangana-Baleanu sense are investigated and discussed. A Laplace variational iteration approach is used to demonstrate the fractional model's mathematical solution. The solution's existence and uniqueness are examined using fixed point theory. Several numerical simulations that enhance the efficacy of the employed derivative are presented and discussed. © 2024 | en_US |
dc.identifier.doi | 10.1016/j.padiff.2024.100741 | |
dc.identifier.issn | 2666-8181 | |
dc.identifier.scopus | 2-s2.0-85196830531 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.padiff.2024.100741 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12416/9754 | |
dc.identifier.volume | 11 | en_US |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Partial Differential Equations in Applied Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 4 | |
dc.subject | Fixed Point Theory | en_US |
dc.subject | Laplace Variation Iteration Method | en_US |
dc.subject | The Atangana-Baleanu Fractional Derivative | en_US |
dc.title | A Mathematical Theoretical Study of Atangana-Baleanu Fractional Burgers’ Equations | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |