Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Optimal Control for a Fractional Tuberculosis Infection Model Including the Impact of Diabetes and Resistant Strains

dc.contributor.author AL-Mekhlafi, S. M.
dc.contributor.author Baleanu, D.
dc.contributor.author Sweilam, N. H.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-01-13T11:31:04Z
dc.date.accessioned 2025-09-18T12:48:57Z
dc.date.available 2020-01-13T11:31:04Z
dc.date.available 2025-09-18T12:48:57Z
dc.date.issued 2019
dc.description Al-Mekhlafi, Seham/0000-0003-0351-9679 en_US
dc.description.abstract The objective of this paper is to study the optimal control problem for the fractional tuberculosis (TB) infection model including the impact of diabetes and resistant strains. The governed model consists of 14 fractional-order (FO) equations. Four control variables are presented to minimize the cost of interventions. The fractional derivative is defined in the Atangana-Baleanu-Caputo (ABC) sense. New numerical schemes for simulating a FO optimal system with Mittag-Leffler kernels are presented. These schemes are based on the fundamental theorem of fractional calculus and Lagrange polynomial interpolation. We introduce a simple modification of the step size in the two-step Lagrange polynomial interpolation to obtain stability in a larger region. Moreover, necessary and sufficient conditions for the control problem are considered. Some numerical simulations are given to validate the theoretical results. (C) 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. en_US
dc.description.publishedMonth 5
dc.identifier.citation Sweilam, N. H.; AL-Mekhlafi, S. M.; Baleanu, D., "Optimal control for a fractional tuberculosis infection model including the impact of diabetes and resistant strains", Journal of Advanced Research, Vol. 17, pp. 125-137, (May 2019). en_US
dc.identifier.doi 10.1016/j.jare.2019.01.007
dc.identifier.issn 2090-1232
dc.identifier.issn 2090-1224
dc.identifier.scopus 2-s2.0-85063213182
dc.identifier.uri https://doi.org/10.1016/j.jare.2019.01.007
dc.identifier.uri https://hdl.handle.net/123456789/12206
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Tuberculosis Model en_US
dc.subject Diabetes And Resistant Strains en_US
dc.subject Atangana-Baleanu Fractional Derivative en_US
dc.subject Lagrange Polynomial Interpolation en_US
dc.subject Nonstandard Two-Step Lagrange Interpolation Method en_US
dc.title Optimal Control for a Fractional Tuberculosis Infection Model Including the Impact of Diabetes and Resistant Strains en_US
dc.title Optimal control for a fractional tuberculosis infection model including the impact of diabetes and resistant strains tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Al-Mekhlafi, Seham/0000-0003-0351-9679
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 6507922829
gdc.author.scopusid 56716517100
gdc.author.scopusid 7005872966
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Sweilam, Nasser/Q-2175-2019
gdc.author.wosid Al-Mekhlafi, Seham/Abe-2359-2020
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Sweilam, N. H.] Cairo Univ, Fac Sci, Math Dept, Giza 12613, Egypt; [AL-Mekhlafi, S. M.] Sanaa Univ, Fac Educ, Math Dept, Sanaa, Yemen; [Baleanu, D.] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, D.] Inst Space Sci, POB MG 23, Bucharest 077125, Romania en_US
gdc.description.endpage 137 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 125 en_US
gdc.description.volume 17 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2910935410
gdc.identifier.pmid 31193340
gdc.identifier.wos WOS:000468205800015
gdc.openalex.fwci 8.15123663
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 88
gdc.plumx.crossrefcites 93
gdc.plumx.facebookshareslikecount 24
gdc.plumx.mendeley 52
gdc.plumx.pubmedcites 14
gdc.plumx.scopuscites 103
gdc.scopus.citedcount 103
gdc.wos.citedcount 84
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files