Novel aspects of discrete dynamical type inequalities within fractional operators having generalized (h)over-bar-discrete Mittag-Leffler kernels and application
dc.authorid | Hamed, Y. S./0000-0002-0365-0282 | |
dc.authorid | Hammouch, Zakia/0000-0001-7349-6922 | |
dc.authorscopusid | 57200041124 | |
dc.authorscopusid | 57222416397 | |
dc.authorscopusid | 12768922000 | |
dc.authorscopusid | 15622742900 | |
dc.authorscopusid | 56524366100 | |
dc.authorwosid | Hammouch, Zakia/D-3532-2011 | |
dc.authorwosid | Hamed Hassanein, Yasser/Aad-7170-2022 | |
dc.authorwosid | Jarad, Fahd/T-8333-2018 | |
dc.authorwosid | Rashid, Saima/Aaf-7976-2021 | |
dc.authorwosid | Sultana, Sobia/Hoc-7553-2023 | |
dc.contributor.author | Rashid, Saima | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Sultana, Sobia | |
dc.contributor.author | Hammouch, Zakia | |
dc.contributor.author | Jarad, Fahd | |
dc.contributor.author | Hamed, Y. S. | |
dc.contributor.authorID | 234808 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-08-23T08:01:16Z | |
dc.date.available | 2022-08-23T08:01:16Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Rashid, Saima] Govt Coll Univ, Dept Math, Faisalabad, Pakistan; [Sultana, Sobia] Imam Muhammad Ibn Saud Islam Univ, Riyadh, Saudi Arabia; [Hammouch, Zakia] Thu Dau Mot Univ, Div Appl Math, Binh Duong, Vietnam; [Hammouch, Zakia; Jarad, Fahd] China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Hammouch, Zakia] Moulay Ismail Univ, Ecole normale superieure, Dept Sci, Meknes, Morocco; [Jarad, Fahd] Cankaya Univ, Dept Math, Ankara, Turkey; [Hamed, Y. S.] Taif Univ, Fac Sci, Dept Math, POB 11099, At Taif 21944, Saudi Arabia | en_US |
dc.description | Hamed, Y. S./0000-0002-0365-0282; Hammouch, Zakia/0000-0001-7349-6922 | en_US |
dc.description.abstract | Discrete fractional calculus (DFC) has had significant advances in the last few decades, being successfully employed in the time scale domain (h) over barZ. Understanding of DFC has demonstrated a valuable improvement in neural networks and modeling in other terrains. In the context of Riemann form (ABTL), we discuss the discrete fractional operator influencing discrete Atangana-Baleanu (AB)-fractional operator having (h) over bar -discrete generalized Mittag-Leffler kernels. In the approach being presented, some new Polya-Szego and Chebyshev type inequalities introduced within discrete AB-fractional operators having h-discrete generalized Mittag-Leffler kernels. By analyzing discrete AB-fractional operators in the time scale domain Z, we can perform a comparison basis for notable outcomes derived from the aforesaid operators. This type of discretization generates novel outcomes for synchronous functions. The specification of this proposed strategy simply demonstrates its efficiency, precision, and accessibility in terms of the methodology of qualitative approach of discrete fractional difference equation solutions, including its stability, consistency, and continual reliance on the initial value for the solutions of many fractional difference equation initial value problems. The repercussions of the discrete AB-fractional operators can depict new presentations for various particular cases. Finally, applications concerning bounding mappings are also illustrated. (C) 2021 Elsevier Ltd. All rights reserved. | en_US |
dc.description.publishedMonth | 9 | |
dc.description.sponsorship | Taif University, Taif, Saudi Arabia [TURSP-2020/155] | en_US |
dc.description.sponsorship | This research was supported by Taif University researchers sup-porting project number (TURSP-2020/155) , Taif University, Taif, Saudi Arabia. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Rashid, Saima...et al. (2021). "Novel aspects of discrete dynamical type inequalities within fractional operators having generalized (h)over-bar-discrete Mittag-Leffler kernels and application", CHAOS SOLITONS & FRACTALS, Vol. 151. | en_US |
dc.identifier.doi | 10.1016/j.chaos.2021.111204 | |
dc.identifier.issn | 0960-0779 | |
dc.identifier.issn | 1873-2887 | |
dc.identifier.scopus | 2-s2.0-85109507396 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.chaos.2021.111204 | |
dc.identifier.volume | 151 | en_US |
dc.identifier.wos | WOS:000693409900012 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Pergamon-elsevier Science Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 20 | |
dc.subject | Discrete Fractional Calculus | en_US |
dc.subject | Atangana-Baleanu Fractional Differences And Sums | en_US |
dc.subject | Discrete Mittag-Leffler Function | en_US |
dc.subject | Polya-Szego Type Inequality | en_US |
dc.subject | Chebyshev Inequality | en_US |
dc.title | Novel aspects of discrete dynamical type inequalities within fractional operators having generalized (h)over-bar-discrete Mittag-Leffler kernels and application | tr_TR |
dc.title | Novel Aspects of Discrete Dynamical Type Inequalities Within Fractional Operators Having Generalized (h)over-Bar Mittag-Leffler Kernels and Application | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 20 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isAuthorOfPublication.latestForDiscovery | c818455d-5734-4abd-8d29-9383dae37406 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |