Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysis

dc.authorscopusid 25929239500
dc.authorscopusid 6505981829
dc.authorscopusid 6701837963
dc.authorscopusid 7005182525
dc.contributor.author Sen Koktas, Nigar
dc.contributor.author Yalabik, Nese
dc.contributor.author Yavuzer, Guenes
dc.contributor.author Duin, Robert P. W.
dc.date.accessioned 2020-04-17T00:02:39Z
dc.date.available 2020-04-17T00:02:39Z
dc.date.issued 2010
dc.department Çankaya University en_US
dc.department-temp [Sen Koktas, Nigar] Cankaya Univ, Dept Math & Comp Sci, TR-06531 Ankara, Turkey; [Yalabik, Nese] Middle E Tech Univ, Dept Comp Engn, TR-06531 Ankara, Turkey; [Yavuzer, Guenes] AU Med Sch, Dept Phys Med & Rehabil, Ankara, Turkey; [Duin, Robert P. W.] Delft Univ Technol, Delft, Netherlands en_US
dc.description.abstract This study presents a system for detecting and scoring of a knee disorder, namely, osteoarthritis (OA). Data used for training and recognition is mainly data obtained through computerized gait analysis, which is a numerical representation of the mechanical measurements of human walking patterns. History and clinical characteristics of the subjects such as age, body mass index and pain level are also included in decision-making. Subjects are allocated into four OA-severity categories, formed in accordance with the Kellgren-Lawrence scale: "Normal", "Mild", "Moderate", and "Severe". Different types of classifiers are combined to incorporate the different types of data and to make the best advantages of different classifiers for better accuracy. A decision tree is developed with Multilayer Perceptrons (MLP) at the leaves. This gives an opportunity to use neural networks to extract hidden (i.e. implicit) knowledge in gait measurements and use it back into the explicit form of the decision trees for reasoning. The approach is similar to the Mixture of Experts method. Individual feature selection is applied using the Mahalanobis distance measure and most discriminatory features are used for each expert MLP. The system is tested by a separate set and a success rate of about 80% is achieved on the average. (c) 2010 Elsevier B.V. All rights reserved. en_US
dc.description.publishedMonth 7
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) en_US
dc.description.sponsorship This study is supported by The Scientific and Technological Research Council of Turkey (TUBITAK). We would also like to thank Prof. Volkan Atalay for valuable suggestions and discussions. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Sen Koktas, Nigar...et al. (2010). "A multi-classifier for grading knee osteoarthritis using gait analysis", Pattern Recognition Letters, Vol. 31, No. p, pp. 898-904. en_US
dc.identifier.doi 10.1016/j.patrec.2010.01.003
dc.identifier.endpage 904 en_US
dc.identifier.issn 0167-8655
dc.identifier.issn 1872-7344
dc.identifier.issue 9 en_US
dc.identifier.scopus 2-s2.0-77951206790
dc.identifier.scopusquality Q1
dc.identifier.startpage 898 en_US
dc.identifier.uri https://doi.org/10.1016/j.patrec.2010.01.003
dc.identifier.volume 31 en_US
dc.identifier.wos WOS:000278186200015
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 28
dc.subject Combining Classifiers en_US
dc.subject Grading Knee Oa en_US
dc.subject Gait Analysis en_US
dc.title A Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysis tr_TR
dc.title A Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysis en_US
dc.type Article en_US
dc.wos.citedbyCount 19
dspace.entity.type Publication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: