Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysis

dc.contributor.authorSen Köktaş, Nigar
dc.contributor.authorYavuzer, Güneş
dc.contributor.authorYalabık, Neşe
dc.contributor.authorDuin, Robert P. W.
dc.date.accessioned2020-04-17T00:02:39Z
dc.date.available2020-04-17T00:02:39Z
dc.date.issued2010
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractThis study presents a system for detecting and scoring of a knee disorder, namely, osteoarthritis (OA). Data used for training and recognition is mainly data obtained through computerized gait analysis, which is a numerical representation of the mechanical measurements of human walking patterns. History and clinical characteristics of the subjects such as age, body mass index and pain level are also included in decision-making. Subjects are allocated into four OA-severity categories, formed in accordance with the Kellgren-Lawrence scale: "Normal", "Mild", "Moderate", and "Severe". Different types of classifiers are combined to incorporate the different types of data and to make the best advantages of different classifiers for better accuracy. A decision tree is developed with Multilayer Perceptrons (MLP) at the leaves. This gives an opportunity to use neural networks to extract hidden (i.e. implicit) knowledge in gait measurements and use it back into the explicit form of the decision trees for reasoning. The approach is similar to the Mixture of Experts method. Individual feature selection is applied using the Mahalanobis distance measure and most discriminatory features are used for each expert MLP. The system is tested by a separate set and a success rate of about 80% is achieved on the average. (c) 2010 Elsevier B.V. All rights reserved.en_US
dc.description.publishedMonth7
dc.identifier.citationSen Koktas, Nigar...et al. (2010). "A multi-classifier for grading knee osteoarthritis using gait analysis", Pattern Recognition Letters, Vol. 31, No. p, pp. 898-904.en_US
dc.identifier.doi10.1016/j.patrec.2010.01.003
dc.identifier.endpage904en_US
dc.identifier.issn0167-8655
dc.identifier.issn1872-7344
dc.identifier.issue9en_US
dc.identifier.startpage898en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12416/3270
dc.identifier.volume31en_US
dc.language.isoenen_US
dc.publisherElsevier Science BVen_US
dc.relation.ispartofPattern Recognition Lettersen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCombining Classifiersen_US
dc.subjectGrading Knee OAen_US
dc.subjectGait Analysisen_US
dc.titleA Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysistr_TR
dc.titleA Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: