A Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysis
dc.authorscopusid | 25929239500 | |
dc.authorscopusid | 6505981829 | |
dc.authorscopusid | 6701837963 | |
dc.authorscopusid | 7005182525 | |
dc.contributor.author | Sen Koktas, Nigar | |
dc.contributor.author | Yalabik, Nese | |
dc.contributor.author | Yavuzer, Guenes | |
dc.contributor.author | Duin, Robert P. W. | |
dc.date.accessioned | 2020-04-17T00:02:39Z | |
dc.date.available | 2020-04-17T00:02:39Z | |
dc.date.issued | 2010 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Sen Koktas, Nigar] Cankaya Univ, Dept Math & Comp Sci, TR-06531 Ankara, Turkey; [Yalabik, Nese] Middle E Tech Univ, Dept Comp Engn, TR-06531 Ankara, Turkey; [Yavuzer, Guenes] AU Med Sch, Dept Phys Med & Rehabil, Ankara, Turkey; [Duin, Robert P. W.] Delft Univ Technol, Delft, Netherlands | en_US |
dc.description.abstract | This study presents a system for detecting and scoring of a knee disorder, namely, osteoarthritis (OA). Data used for training and recognition is mainly data obtained through computerized gait analysis, which is a numerical representation of the mechanical measurements of human walking patterns. History and clinical characteristics of the subjects such as age, body mass index and pain level are also included in decision-making. Subjects are allocated into four OA-severity categories, formed in accordance with the Kellgren-Lawrence scale: "Normal", "Mild", "Moderate", and "Severe". Different types of classifiers are combined to incorporate the different types of data and to make the best advantages of different classifiers for better accuracy. A decision tree is developed with Multilayer Perceptrons (MLP) at the leaves. This gives an opportunity to use neural networks to extract hidden (i.e. implicit) knowledge in gait measurements and use it back into the explicit form of the decision trees for reasoning. The approach is similar to the Mixture of Experts method. Individual feature selection is applied using the Mahalanobis distance measure and most discriminatory features are used for each expert MLP. The system is tested by a separate set and a success rate of about 80% is achieved on the average. (c) 2010 Elsevier B.V. All rights reserved. | en_US |
dc.description.publishedMonth | 7 | |
dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) | en_US |
dc.description.sponsorship | This study is supported by The Scientific and Technological Research Council of Turkey (TUBITAK). We would also like to thank Prof. Volkan Atalay for valuable suggestions and discussions. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Sen Koktas, Nigar...et al. (2010). "A multi-classifier for grading knee osteoarthritis using gait analysis", Pattern Recognition Letters, Vol. 31, No. p, pp. 898-904. | en_US |
dc.identifier.doi | 10.1016/j.patrec.2010.01.003 | |
dc.identifier.endpage | 904 | en_US |
dc.identifier.issn | 0167-8655 | |
dc.identifier.issn | 1872-7344 | |
dc.identifier.issue | 9 | en_US |
dc.identifier.scopus | 2-s2.0-77951206790 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 898 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.patrec.2010.01.003 | |
dc.identifier.volume | 31 | en_US |
dc.identifier.wos | WOS:000278186200015 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science Bv | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 28 | |
dc.subject | Combining Classifiers | en_US |
dc.subject | Grading Knee Oa | en_US |
dc.subject | Gait Analysis | en_US |
dc.title | A Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysis | tr_TR |
dc.title | A Multi-Classifier for Grading Knee Osteoarthritis Using Gait Analysis | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 19 | |
dspace.entity.type | Publication |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: