Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Solving time fractional Burgers' and Fisher's equations using cubic B-spline approximation method

Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

This article presents a numerical algorithm for solving time fractional Burgers' and Fisher's equations using cubic B-spline finite element method. The L1 formula with Caputo derivative is used to discretized the time fractional derivative, whereas the Crank-Nicolson scheme based on cubic B-spline functions is used to interpolate the solution curve along the spatial grid. The numerical scheme has been implemented on three test problems. The obtained results indicate that the proposed method is a good option for solving nonlinear fractional Burgers' and Fisher's equations. The error norms L2 and L infinity have been calculated to validate the efficiency and accuracy of the presented algorithm.

Description

Keywords

Cubic B-Spline Collocation Method, Time Fractional Differential Equation, Caputo's Fractional Derivative, Stability and Convergence, Finite Difference Formulation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Majeed, Abdul...et al. (2020) "Solving time fractional Burgers' and Fisher's equations using cubic B-spline approximation method", Advances in Difference Equations, Vol. 2020, No. 1.

WoS Q

Scopus Q

Source

Advances in Difference Equations

Volume

2020

Issue

1

Start Page

End Page