Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hopf Bifurcations of a Lengyel-Epstein Model Involving Two Discrete Time Delays

dc.authorid Merdan, Huseyin/0000-0003-2311-5348
dc.authorscopusid 57219806712
dc.authorscopusid 6508264521
dc.authorscopusid 12144371100
dc.authorwosid Merdan, Huseyin/V-3852-2017
dc.authorwosid Guerrini, Luca/C-4262-2013
dc.authorwosid Bilazeroğlu, Şeyma/Aaw-4918-2021
dc.contributor.author Bilazeroglu, Seyma
dc.contributor.author Merdan, Huseyin
dc.contributor.author Guerrini, Luca
dc.date.accessioned 2025-05-09T21:13:09Z
dc.date.available 2025-05-09T21:13:09Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Bilazeroglu, Seyma] Cankaya Univ, Dept Math, Eskisehir Yolu 29 Km, TR-06790 Ankara, Turkey; [Merdan, Huseyin] TOBB Univ Econ & Technol, Dept Math, Sogutozu Caddesi 43, TR-06560 Ankara, Turkey; [Guerrini, Luca] Polytech Univ Marche, Dept Management, Piazza Martelli 8, I-60121 Ancona, Italy en_US
dc.description Merdan, Huseyin/0000-0003-2311-5348 en_US
dc.description.abstract Hopf bifurcations of a Lengyel-Epstein model involving two discrete time delays are investigated. First, stability analysis of the model is given, and then the conditions on parameters at which the system has a Hopf bifurcation are determined. Second, bifurcation analysis is given by taking one of delay parameters as a bifurcation parameter while fixing the other in its stability interval to show the existence of Hopf bifurcations. The normal form theory and the center manifold reduction for functional differential equations have been utilized to determine some properties of the Hopf bifurcation including the direction and stability of bifurcating periodic solution. Finally, numerical simulations are performed to support theoretical results. Analytical results together with numerics present that time delay has a crucial role on the dynamical behavior of Chlorine Dioxide-Iodine-Malonic Acid (CIMA) reaction governed by a system of nonlinear differential equations. Delay causes oscillations in the reaction system. These results are compatible with those observed experimentally. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.3934/dcdss.2021150
dc.identifier.endpage 554 en_US
dc.identifier.issn 1937-1632
dc.identifier.issn 1937-1179
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85124389233
dc.identifier.scopusquality Q2
dc.identifier.startpage 535 en_US
dc.identifier.uri https://doi.org/10.3934/dcdss.2021150
dc.identifier.uri https://hdl.handle.net/20.500.12416/9539
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:000725204300001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Lengyel-Epstein System en_US
dc.subject Oscillating Reaction en_US
dc.subject Hopf Bifurcation en_US
dc.subject Delay Differential Equation en_US
dc.subject Functional Differential Equation en_US
dc.subject Stability en_US
dc.subject Time Delay en_US
dc.subject Periodic Solutions en_US
dc.title Hopf Bifurcations of a Lengyel-Epstein Model Involving Two Discrete Time Delays en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files