Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Deep Learning Method for Compressive Strength Prediction for Lightweight Concrete

dc.contributor.author Nanehkaran, Yaser A.
dc.contributor.author Azarafza, Mohammad
dc.contributor.author Pusatli, Tolga
dc.contributor.author Bonab, Masoud Hajialilue
dc.contributor.author Irani, Arash Esmatkhah
dc.contributor.author Kouhdarag, Mehdi
dc.contributor.author Derakhshani, Reza
dc.contributor.authorID 51704 tr_TR
dc.contributor.other 03.07. Yönetim Bilişim Sistemleri
dc.contributor.other 03. İktisadi ve İdari Birimler Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2024-05-30T08:10:31Z
dc.date.accessioned 2025-09-18T12:09:08Z
dc.date.available 2024-05-30T08:10:31Z
dc.date.available 2025-09-18T12:09:08Z
dc.date.issued 2023
dc.description Ahangari Nanehkaran, Yaser/0000-0002-8055-3195; Derakhshani, Reza/0000-0001-7499-4384; Pusatli, Tolga/0000-0002-2303-8023 en_US
dc.description.abstract Concrete is the most widely used building material, with various types including high-and ultra-high-strength, reinforced, normal, and lightweight concretes. However, accurately predicting concrete properties is challenging due to the geotechnical design code's requirement for specific characteristics. To overcome this issue, researchers have turned to new technologies like machine learning to develop proper methodologies for concrete specification. In this study, we propose a highly accurate deep learning-based predictive model to investigate the compressive strength (UCS) of lightweight concrete with natural aggregates (pumice). Our model was implemented on a database containing 249 experimental records and revealed that water, cement, water-cement ratio, fine-coarse aggregate, aggregate substitution rate, fine aggregate replacement, and superplasticizer are the most influential covariates on UCS. To validate our model, we trained and tested it on random subsets of the database, and its performance was evaluated using a confusion matrix and receiver operating characteristic (ROC) overall accuracy. The proposed model was compared with widely known machine learning methods such as MLP, SVM, and DT classifiers to assess its capability. In addition, the model was tested on 25 laboratory UCS tests to evaluate its predictability. Our findings showed that the proposed model achieved the highest accuracy (accuracy=0.97, precision=0.97) and the lowest error rate with a high learning rate (R2=0.914), as confirmed by ROC (AUC=0.971), which is higher than other classifiers. Therefore, the proposed method demonstrates a high level of performance and capability for UCS predictions. en_US
dc.description.publishedMonth 9
dc.description.sponsorship National Nature Science Foundation of China [42250410321] en_US
dc.description.sponsorship The authors would like to thank the anonymous reviewers for providing invaluable review comments and recommendations for improving the scientific level of the article. This research was funded by the National Nature Science Foundation of China (Grant ID: 42250410321) . en_US
dc.identifier.citation Nanehkaran, Yaser A...et al. (2023). "Deep learning method for compressive strength prediction for lightweight concrete", Computers and Concrete, Vol. 32, No. 3, pp. 327-337. en_US
dc.identifier.doi 10.12989/cac.2023.32.3.327
dc.identifier.issn 1598-8198
dc.identifier.issn 1598-818X
dc.identifier.scopus 2-s2.0-85171874992
dc.identifier.uri https://doi.org/10.12989/cac.2023.32.3.327
dc.identifier.uri https://hdl.handle.net/123456789/11324
dc.language.iso en en_US
dc.publisher Techno-press en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Aggregate en_US
dc.subject Compressive Strength en_US
dc.subject Deep Learning en_US
dc.subject Lightweight Concrete en_US
dc.subject Predictive Model en_US
dc.title Deep Learning Method for Compressive Strength Prediction for Lightweight Concrete en_US
dc.title Deep learning method for compressive strength prediction for lightweight concrete tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Ahangari Nanehkaran, Yaser/0000-0002-8055-3195
gdc.author.id Derakhshani, Reza/0000-0001-7499-4384
gdc.author.id Pusatli, Tolga/0000-0002-2303-8023
gdc.author.institutional Pusatlı, Özgür Tolga
gdc.author.scopusid 57189219637
gdc.author.scopusid 57211004694
gdc.author.scopusid 57821219800
gdc.author.scopusid 15841653000
gdc.author.scopusid 57679284100
gdc.author.scopusid 37015206900
gdc.author.scopusid 57201793640
gdc.author.wosid Esmatkhak Irani, Arash/Iyj-0042-2023
gdc.author.wosid Azarafza, Mohammad/Aap-2136-2020
gdc.author.wosid Nanehkaran, Yaser/Aan-6150-2021
gdc.author.wosid Bonab, Masoud/M-9308-2015
gdc.author.wosid Derakhshani, Reza/P-1194-2019
gdc.author.wosid Pusatli, Tolga/C-6912-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Nanehkaran, Yaser A.] Yancheng Teachers Univ, Sch Informat Engn, Yancheng 224002, Jiangsu, Peoples R China; [Azarafza, Mohammad; Bonab, Masoud Hajialilue] Univ Tabriz, Dept Civil Engn, Tabriz 5166616471, Iran; [Pusatli, Tolga] Cankaya Univ, Dept Management Informat Syst, TR-06790 Ankara, Turkiye; [Irani, Arash Esmatkhah] Islamic Azad Univ, Dept Civil Engn, Tabriz Branch, Tabriz 5157944533, Iran; [Kouhdarag, Mehdi] Islamic Azad Univ, Dept Civil Engn, Malekan Branch, Malekan 5561788389, Iran; [Chen, Junde] Xiangtan Univ, Dept Elect Commerce, Xiangtan 411105, Hunan, Peoples R China; [Derakhshani, Reza] Univ Utrecht, Dept Earth Sci, Utrecht, Netherlands en_US
gdc.description.endpage 337 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 327 en_US
gdc.description.volume 32 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.wos WOS:001090247300007
gdc.opencitations.count 0
gdc.plumx.mendeley 16
gdc.plumx.scopuscites 12
gdc.scopus.citedcount 12
gdc.wos.citedcount 13
relation.isAuthorOfPublication 14474dfb-07d3-4bb1-b133-a7290cc5be9f
relation.isAuthorOfPublication.latestForDiscovery 14474dfb-07d3-4bb1-b133-a7290cc5be9f
relation.isOrgUnitOfPublication 907f32e8-a2ec-47a0-b274-af0eefc912b5
relation.isOrgUnitOfPublication da4f5829-5e26-41bc-9c75-12779175bb39
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 907f32e8-a2ec-47a0-b274-af0eefc912b5

Files