Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Covariance Features for Trajectory Analysis

dc.contributor.author Karadeniz, Talha
dc.contributor.author Maras, Hakan Hadi
dc.contributor.other 06.09. Yazılım Mühendisliği
dc.contributor.other 06. Mühendislik Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2025-05-13T13:32:57Z
dc.date.accessioned 2025-09-18T14:10:45Z
dc.date.available 2025-05-13T13:32:57Z
dc.date.available 2025-09-18T14:10:45Z
dc.date.issued 2018
dc.description Maras, Hadi Hakan/0000-0001-5117-3938 en_US
dc.description.abstract In this work, it is demonstrated that covariance estimator methods can be used for trajectory classification. It is shown that, features obtained via shrunk covariance estimation are suitable for describing trajectories. Compared to Dynamic Time Warping, application of explained technique is faster and yields more accurate results. An improvement of Dynamic Time Warping based on counting statistical comparison of base distance measures is also achieved. Results on Australian Sign Language and Character Trajectories datasets are reported. Experiment realizations imply feasibility through covariance attributes on time series. en_US
dc.description.sponsorship TUBITAK [113S094]; TUBITAK en_US
dc.description.sponsorship This exploration is conducted for the Surgical Navigation Project (CAN) which is supported by TUBITAK (113S094). The engineering team would like to thank TUBITAK support for realizing this study. en_US
dc.identifier.doi 10.5755/j01.eie.24.3.15290
dc.identifier.issn 1392-1215
dc.identifier.scopus 2-s2.0-85049809207
dc.identifier.uri https://doi.org/10.5755/j01.eie.24.3.15290
dc.identifier.uri https://hdl.handle.net/20.500.12416/13773
dc.language.iso en en_US
dc.publisher Kaunas Univ Technology en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Covariance Matrices en_US
dc.subject Data Mining en_US
dc.subject Sign Language en_US
dc.subject Time Series Analysis en_US
dc.title Covariance Features for Trajectory Analysis en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Maras, Hadi Hakan/0000-0001-5117-3938
gdc.author.institutional Karadeniz, Talha
gdc.author.scopusid 35299561100
gdc.author.scopusid 56875440000
gdc.author.wosid Maras, Hadi Hakan/G-1236-2017
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Karadeniz, Talha; Maras, Hakan Hadi] Cankaya Univ, Dept Comp Engn, Ankara, Turkey en_US
gdc.description.endpage 81 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 78 en_US
gdc.description.volume 24 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W2809761173
gdc.identifier.wos WOS:000436583500012
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.06
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isAuthorOfPublication.latestForDiscovery 7269fd52-d99c-41aa-863d-cb899d6b3ab7
relation.isOrgUnitOfPublication aef16c1d-5b84-42f9-9dab-8029b2b0befd
relation.isOrgUnitOfPublication 43797d4e-4177-4b74-bd9b-38623b8aeefa
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery aef16c1d-5b84-42f9-9dab-8029b2b0befd

Files