Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the solutions for generalised multiorder fractional partial differential equations arising in physics

dc.authorid Jangid, Kamlesh/0000-0002-3138-3564
dc.authorid Purohit, S. D./0000-0002-1098-5961
dc.authorscopusid 36722038700
dc.authorscopusid 7005872966
dc.authorscopusid 55371756700
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Jangid, Kamlesh/T-8452-2017
dc.authorwosid Purohit, S. D./F-3017-2011
dc.contributor.author Purohit, Sunil Dutt
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Jangid, Kamlesh
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-11-30T08:40:11Z
dc.date.available 2022-11-30T08:40:11Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Purohit, Sunil Dutt; Jangid, Kamlesh] Rajasthan Tech Univ, Dept HEAS Math, Kota, Rajasthan, India; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
dc.description Jangid, Kamlesh/0000-0002-3138-3564; Purohit, S. D./0000-0002-1098-5961 en_US
dc.description.abstract In this article, we have studied solutions of a generalised multiorder fractional partial differential equations involving the Caputo time-fractional derivative and the Riemann-Liouville space fractional derivatives using Laplace-Fourier transform technique. Proposed generalised multiorder fractional partial differential equation is reducible to Schrodinger equation, wave equation and diffusion equation in a more general sense, and hence, solutions of these equations are specifically noted. Not only this, solutions of equation proposed in the stochastic resetting theory in the context of Brownian motion can also be found in a general regime. en_US
dc.description.sponsorship Rajasthan Technical University, Kota [TEQIP-III/RTU(ATU)/CRS/2019-20/47] en_US
dc.description.sponsorship Rajasthan Technical University, Kota, Grant/Award Number: TEQIP-III/RTU(ATU)/CRS/2019-20/47 en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Purohit, Sunil Dutt; Baleanu, Dumitru; Jangid, Kamlesh (2021). "On the solutions for generalised multiorder fractional partial differential equations arising in physics", Mathematical Methods in the Applied Sciences. en_US
dc.identifier.doi 10.1002/mma.7431
dc.identifier.endpage 8147 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85104612710
dc.identifier.scopusquality Q1
dc.identifier.startpage 8139 en_US
dc.identifier.uri https://doi.org/10.1002/mma.7431
dc.identifier.volume 46 en_US
dc.identifier.wos WOS:000642338400001
dc.identifier.wosquality Q1
dc.institutionauthor Baleanu, Dumitru
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 9
dc.subject Brownian Motion en_US
dc.subject Diffusion Equation In Nonstatic Stochastic Resetting en_US
dc.subject Fractional Calculus en_US
dc.subject Fractional Diffusion Equation en_US
dc.subject Fractional Schr&#246 en_US
dc.subject Dinger Wave Equation en_US
dc.title On the solutions for generalised multiorder fractional partial differential equations arising in physics tr_TR
dc.title On the Solutions for Generalised Multiorder Fractional Partial Differential Equations Arising in Physics en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: