Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Operational Matrix Formulation of the Jacobi Tau Approximation for Space Fractional Diffusion Equation

dc.contributor.author Bhrawy, Ali H.
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ezz-Eldien, Samer S.
dc.contributor.author Doha, Eid H.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other 02.02. Matematik
dc.contributor.other 02. Fen-Edebiyat Fakültesi
dc.contributor.other 01. Çankaya Üniversitesi
dc.date.accessioned 2020-04-29T22:49:49Z
dc.date.accessioned 2025-09-18T16:06:54Z
dc.date.available 2020-04-29T22:49:49Z
dc.date.available 2025-09-18T16:06:54Z
dc.date.issued 2014
dc.description Doha, Eid/0000-0002-7781-6871 en_US
dc.description.abstract In this article, an accurate and efficient numerical method is presented for solving the space-fractional order diffusion equation (SFDE). Jacobi polynomials are used to approximate the solution of the equation as a base of the tau spectral method which is based on the Jacobi operational matrices of fractional derivative and integration. The main advantage of this method is based upon reducing the nonlinear partial differential equation into a system of algebraic equations in the expansion coefficient of the solution. In order to test the accuracy and efficiency of our method, the solutions of the examples presented are introduced in the form of tables to make a comparison with those obtained by other methods and with the exact solutions easy. en_US
dc.description.publishedMonth 8
dc.description.sponsorship Deanship of Scientific Research DSR, King Abdulaziz University, Jeddah; DSR en_US
dc.description.sponsorship This paper was funded by the Deanship of Scientific Research DSR, King Abdulaziz University, Jeddah. The authors, therefore, acknowledge with thanks DSR technical and financial support. en_US
dc.identifier.doi 10.1186/1687-1847-2014-231
dc.identifier.issn 1687-1847
dc.identifier.scopus 2-s2.0-84934937716
dc.identifier.uri https://doi.org/10.1186/1687-1847-2014-231
dc.identifier.uri https://hdl.handle.net/20.500.12416/14623
dc.language.iso en en_US
dc.publisher Springer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Multi-Term Fractional Differential Equations en_US
dc.subject Fractional Diffusion Equations en_US
dc.subject Tau Method en_US
dc.subject Shifted Jacobi Polynomials en_US
dc.subject Operational Matrix en_US
dc.subject Caputo Derivative en_US
dc.title The Operational Matrix Formulation of the Jacobi Tau Approximation for Space Fractional Diffusion Equation en_US
dc.title The Operational Matrix Formulation of The Jacobi Tau Approximation For Space Fractional Diffusion Equation tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Doha, Eid/0000-0002-7781-6871
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 6602467804
gdc.author.scopusid 14319102000
gdc.author.scopusid 7005872966
gdc.author.scopusid 38861466200
gdc.author.wosid Ezz-Eldien, Samer/Agk-8059-2022
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.author.wosid Bhrawy, Ali/D-4745-2012
gdc.author.wosid Doha, Eid/L-1723-2019
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Doha, Eid H.] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt; [Bhrawy, Ali H.] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia; [Bhrawy, Ali H.] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt; [Baleanu, Dumitru] King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah, Saudi Arabia; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Ezz-Eldien, Samer S.] Modern Acad, Inst Informat Technol, Dept Basic Sci, Cairo, Egypt en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2141861961
gdc.identifier.wos WOS:000342158400003
gdc.openalex.fwci 2.3265655
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 34
gdc.plumx.crossrefcites 21
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 44
gdc.scopus.citedcount 44
gdc.wos.citedcount 36
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files