Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

The Investigation of Energy Management and Atomic Interaction Between Coronavirus Structure in the Vicinity of Aqueous Environment of H2o Molecules Via Molecular Dynamics Approach

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The coronavirus pandemic is caused by intense acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Identifying the atomic structure of this virus can lead to the treatment of related diseases in medical cases. In the current computational study, the atomic evolution of the coronavirus in an aqueous environment using the Molecular Dynamics (MD) approach is explained. The virus behaviors by reporting the physical attributes such as total energy, temperature, potential energy, interaction energy, volume, entropy, and radius of gyration of the modeled virus are reported. The MD results indicated the atomic stability of the simulated virus significantly reduced after 25.33 ns. Furthermore, the volume of simulated virus changes from 182397 angstrom(3) to 372589 angstrom(3) after t = 30 ns. This result shows the atomic interaction between various atoms in coronavirus structure decreases in the vicinity of H2O molecules. Numerically, the interaction energy between virus and aqueous environment converges to -12387 eV and -251 eV values in the initial and final time steps of the MD study procedure, respectively. (C) 2021 Elsevier B.V. All rights reserved.

Description

Karimipour, Arash/0000-0001-7596-7134

Keywords

Molecular Dynamic Simulation, Coronavirus, Aqueous Environment, Atomic Stability, Standard Condition

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Guo, Hui-Hui...et al. (2021). "The investigation of energy management and atomic interaction between coronavirus structure in the vicinity of aqueous environment of H2O molecules via molecular dynamics approach", Journal of Molecular Liquids, Vol. 341.

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
3

Source

Volume

341

Issue

Start Page

End Page

PlumX Metrics
Citations

CrossRef : 2

Scopus : 3

PubMed : 1

Captures

Mendeley Readers : 24

SCOPUS™ Citations

3

checked on Nov 25, 2025

Web of Science™ Citations

2

checked on Nov 25, 2025

Page Views

1

checked on Nov 25, 2025

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.8881215

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo