Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Diamond alpha Bennett-Leindler type dynamic inequalities and their applications

dc.contributor.authorKaymakçalan, Billur
dc.contributor.authorKaymakçalan, Billur
dc.contributor.authorPelen, Neslihan Nesliye
dc.contributor.authorID109448tr_TR
dc.date.accessioned2022-04-06T11:20:25Z
dc.date.available2022-04-06T11:20:25Z
dc.date.issued2022
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, two kinds of dynamic Bennett-Leindler type inequalities via the diamond alpha integrals are derived. The first kind consists of eight new integral inequalities which can be considered as mixed type in the sense that these inequalities contain delta, nabla and diamond alpha integrals together due to the fact that convex linear combinations of delta and nabla Bennett-Leindler type inequalities give diamond alpha Bennett-Leindler type inequalities. The second kind involves four new inequalities, which are composed of only diamond alpha integrals, unifying delta and nabla Bennett-Leindler type inequalities. For the second type, choosing alpha=1 or alpha=0 not only yields the same results as the ones obtained for delta and nabla cases but also provides novel results for them. Therefore, both kinds of our results expand some of the known delta and nabla Bennett-Leindler type inequalities, offer new types of these inequalities, and bind and unify them into one diamond alpha Bennett-Leindler type inequalities. Moreover, an application of dynamic Bennett-Leindler type inequalities to the oscillation theory of the second-order half linear dynamic equation is developed and presented for the first time ever.en_US
dc.description.publishedMonth3
dc.identifier.citationKayar, Zeynep; Kaymakçalan, Billur; Pelen, Neslihan Nesliye (2022). "Diamond alpha Bennett-Leindler type dynamic inequalities and their applications", Mathematical Methods in the Applied Sciences, Vol. 45, No. 5, pp .2797-2819.en_US
dc.identifier.doi10.1002/mma.7955
dc.identifier.endpage2819en_US
dc.identifier.issn1099-1476
dc.identifier.issue5en_US
dc.identifier.startpage2797en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/5273
dc.identifier.volume45en_US
dc.language.isoenen_US
dc.relation.ispartofMathematical Methods in the Applied Sciencesen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBennett's Inequalityen_US
dc.subjectCopson's Inequalityen_US
dc.subjectDiamond-Alpha Derivativeen_US
dc.subjectHardy's Inequalityen_US
dc.subjectLeindler'sinequalityen_US
dc.subjectOscillation of the Second-Order Half Linear Dynamic Equationen_US
dc.titleDiamond alpha Bennett-Leindler type dynamic inequalities and their applicationstr_TR
dc.titleDiamond Alpha Bennett-Leindler Type Dynamic Inequalities and Their Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication0a88c582-7df0-41a2-8310-4ef6b993616b
relation.isAuthorOfPublication.latestForDiscovery0a88c582-7df0-41a2-8310-4ef6b993616b

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: