Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Novel Approach for Continuous Authentication of Mobile Users Using Reduce Feature Elimination (RFE): A Machine Learning Approach

dc.authorid Ahmadian, Ali/0000-0002-0106-7050
dc.authorscopusid 59280751000
dc.authorscopusid 55450561600
dc.authorscopusid 57208839546
dc.authorscopusid 25824675400
dc.authorscopusid 57198791439
dc.authorscopusid 7005872966
dc.authorscopusid 7005872966
dc.authorwosid , M.Senthilkumar/L-5551-2015
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Ahmadian, Ali/N-3697-2015
dc.contributor.author Kumari, Sonal
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Singh, Karan
dc.contributor.author Khan, Tayyab
dc.contributor.author Ariffin, Mazeyanti Mohd
dc.contributor.author Mohan, Senthil Kumar
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Ahmadian, Ali
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2023-11-22T11:57:19Z
dc.date.available 2023-11-22T11:57:19Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Kumari, Sonal; Singh, Karan; Khan, Tayyab] Jawaharlal Nehru Univ, Sch Comp & Syst Sci, New Delhi, India; [Ariffin, Mazeyanti Mohd] Univ Teknol Petronas, Posit Comp Res Cluster, Seri Iskandar 32610, Perak, Malaysia; [Mohan, Senthil Kumar] Vellore Inst Technol, Sch Informat Technol & Engn, Vellore, Tamilnadu, India; [Baleanu, Dumitru] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkiye; [Baleanu, Dumitru] Lebanese Amer Univ, Beirut 11022, Lebanon; [Baleanu, Dumitru] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Ahmadian, Ali] Mediterranea Univ Reggio Calabria, Decis Lab, I-89125 Reggio Di Calabria, Italy; [Ahmadian, Ali] Near East Univ, Dept Math, Mersin 10, Nicosia, Turkiye; [Ahmadian, Ali] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut, Lebanon en_US
dc.description Ahmadian, Ali/0000-0002-0106-7050 en_US
dc.description.abstract Mobile phones are a valuable object in our daily life. With the acquisition of the latest technologies, their capabilities and demands increase day by day. However, acquiring the latest technologies makes mobile phones vulnerable to various security threats. Generally, people use passwords, pins, fingerprint locks, etc., to secure their mobile phones. Passwords and pins create so much burden for people always to remember their credentials. These traditional approaches are susceptible to brute force attacks, smudge attacks, and shoulder surfing attacks. Due to the difficulties mentioned above, researchers are leaning more towards continuous authentication. Therefore, this paper introduces an adaptive continuous authentication approach, a behavioral-based mobile authentication mechanism. In (Ehatisham-ul-Haq et al. J Netw Comput Appl 109:24-35, 2018), the authors achieved a good average accuracy of 97.95% with a Support vector machine classifier (SVM). We used LGB and RF and got 95.8% and 98.8% accuracy in user recognition. RF and LGB were trained for all five body positions separately to recognize each User among five users. This model also promises to reduce the system's cost and complexity by introducing the reduce feature elimination (RFE) technique during feature selection. RFE eliminates the less critical feature and reduces the dimension of the feature set. Hence, it demonstrates the benefits of our model for mobile authentication. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Kumari, Sonal...et.al. (2023). "A Novel Approach for Continuous Authentication of Mobile Users Using Reduce Feature Elimination (RFE): A Machine Learning Approach", Mobile Networks & Applications. en_US
dc.identifier.doi 10.1007/s11036-023-02103-z
dc.identifier.endpage 781 en_US
dc.identifier.issn 1383-469X
dc.identifier.issn 1572-8153
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85147762364
dc.identifier.scopusquality Q1
dc.identifier.startpage 767 en_US
dc.identifier.uri https://doi.org/10.1007/s11036-023-02103-z
dc.identifier.volume 28 en_US
dc.identifier.wos WOS:000932463000001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 9
dc.subject Mobile en_US
dc.subject Continuous Authentication en_US
dc.subject Accuracy en_US
dc.subject Machine Learning en_US
dc.subject Feature Selection en_US
dc.subject Behavioral en_US
dc.title A Novel Approach for Continuous Authentication of Mobile Users Using Reduce Feature Elimination (RFE): A Machine Learning Approach tr_TR
dc.title A Novel Approach for Continuous Authentication of Mobile Users Using Reduce Feature Elimination (Rfe): A Machine Learning Approach en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: