Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The new robust conic GPLM method with an application to finance: prediction of credit default

dc.contributor.authorDefterli, Özlem
dc.contributor.authorWeber, Gerhard-Wilhelm
dc.contributor.authorÇavuşoğlu, Zehra
dc.contributor.authorDefterli, Özlem
dc.contributor.authorID31401tr_TR
dc.date.accessioned2017-03-14T10:59:55Z
dc.date.available2017-03-14T10:59:55Z
dc.date.issued2013
dc.departmentÇankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümüen_US
dc.description.abstractThis paper contributes to classification and identification in modern finance through advanced optimization. In the last few decades, financial misalignments and, thereby, financial crises have been increasing in numbers due to the rearrangement of the financial world. In this study, as one of the most remarkable of these, countries' debt crises, which result from illiquidity, are tried to predict with some macroeconomic variables. The methodology consists of a combination of two predictive regression models, logistic regression and robust conic multivariate adaptive regression splines (RCMARS), as linear and nonlinear parts of a generalized partial linear model. RCMARS has an advantage of coping with the noise in both input and output data and of obtaining more consistent optimization results than CMARS. An advanced version of conic generalized partial linear model which includes robustification of the data set is introduced: robust conic generalized partial linear model (RCGPLM). This new model is applied on a data set that belongs to 45 emerging markets with 1,019 observations between the years 1980 and 2005.en_US
dc.description.publishedMonth6
dc.identifier.citationÖzmen, A...et al. (2013). The new robust conic GPLM method with an application to finance: prediction of credit default. Journal Of Global Optimization, 56(2), 233-249. http://dx.doi.org/10.1007/s10898-012-9902-7en_US
dc.identifier.doi10.1007/s10898-012-9902-7
dc.identifier.endpage249en_US
dc.identifier.issn0925-5001
dc.identifier.issue2en_US
dc.identifier.startpage233en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/1464
dc.identifier.volume56en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal Of Global Optimizationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPredicting Default Probabilitiesen_US
dc.subjectUncertaintyen_US
dc.subjectRobust Optimizationen_US
dc.subjectRCMARSen_US
dc.subjectRobust Conic Generalized Partial Linear Modelen_US
dc.titleThe new robust conic GPLM method with an application to finance: prediction of credit defaulttr_TR
dc.titleThe New Robust Conic Gplm Method With an Application To Finance: Prediction of Credit Defaulten_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication9f00fb1b-e8e0-4303-9d32-1ac0230e2616
relation.isAuthorOfPublication.latestForDiscovery9f00fb1b-e8e0-4303-9d32-1ac0230e2616

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: