A hybrid fractional COVID-19 model with general population mask use: Numerical treatments
dc.authorscopusid | 6507922829 | |
dc.authorscopusid | 56716517100 | |
dc.authorscopusid | 57213225942 | |
dc.authorscopusid | 7005872966 | |
dc.contributor.author | Sweilam, N.H. | |
dc.contributor.author | AL-Mekhlafi, S.M. | |
dc.contributor.author | Almutairi, A. | |
dc.contributor.author | Baleanu, D. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-02-21T13:12:02Z | |
dc.date.available | 2022-02-21T13:12:02Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | Sweilam N.H., Cairo University, Faculty of Science, Department of Mathematics, Giza, Egypt; AL-Mekhlafi S.M., Sana'a University, Faculty of Education, Department of Mathematics, Yemen; Almutairi A., Department of Mathematics, Faculty of Science, University of Hafr AlBatin, Hafr AlBatin, Saudi Arabia; Baleanu D., Cankaya University, Department of Mathematics, Turkey, Institute of Space Sciences, Magurele-Bucharest, Romania | en_US |
dc.description.abstract | In this work, a novel mathematical model of Coronavirus (2019-nCov) with general population mask use with modified parameters. The proposed model consists of fourteen fractional-order nonlinear differential equations. Grünwald-Letnikov approximation is used to approximate the new hybrid fractional operator. Compact finite difference method of six order with a new hybrid fractional operator is developed to study the proposed model. Stability analysis of the used methods are given. Comparative studies with generalized fourth order Runge–Kutta method are given. It is found that, the proposed model can be described well the real data of daily confirmed cases in Egypt. © 2021 THE AUTHORS | en_US |
dc.description.publishedMonth | 6 | |
dc.description.sponsorship | Cairo University, CU, (2019-nCov) | en_US |
dc.identifier.citation | Sweilam, N. H...et al. (2021). "A hybrid fractional COVID-19 model with general population mask use: Numerical treatments", Alexandria Engineering Journal, Vol. 60, No. 3, pp. 3219-3232. | en_US |
dc.identifier.doi | 10.1016/j.aej.2021.01.057 | |
dc.identifier.endpage | 3232 | en_US |
dc.identifier.issn | 1110-0168 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-85100622653 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 3219 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.aej.2021.01.057 | |
dc.identifier.volume | 60 | en_US |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Baleanu, Dumitru | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.ispartof | Alexandria Engineering Journal | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 16 | |
dc.subject | Compact Finite Difference Method Of Six Order | en_US |
dc.subject | Coronavirus Diseases | en_US |
dc.subject | Face Mask | en_US |
dc.subject | Generalized Fourth Order Runge–Kutta Method | en_US |
dc.subject | Hybrid Fractional Derivatives | en_US |
dc.title | A hybrid fractional COVID-19 model with general population mask use: Numerical treatments | tr_TR |
dc.title | A Hybrid Fractional Covid-19 Model With General Population Mask Use: Numerical Treatments | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |