Recovering differential pencils with spectral boundary conditions and spectral jump conditions
dc.authorid | Khalili, Yasser/0000-0002-1402-8667 | |
dc.authorscopusid | 35487618300 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Khalili, Yasser/Aaa-4461-2022 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.contributor.author | Khalili, Yasser | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-12-07T12:03:13Z | |
dc.date.available | 2022-12-07T12:03:13Z | |
dc.date.issued | 2020 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Khalili, Yasser] Sari Agr Sci & Nat Resources Univ, Dept Basic Sci, Sari 578, Iran; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey | en_US |
dc.description | Khalili, Yasser/0000-0002-1402-8667 | en_US |
dc.description.abstract | In this work, we discuss the inverse problem for second order differential pencils with boundary and jump conditions dependent on the spectral parameter. We establish the following uniqueness theorems: (i) the potentials q(k)(x) and boundary conditions of such a problem can be uniquely established by some information on eigenfunctions at some internal point b is an element of (pi/2, pi) and parts of two spectra; (ii) if one boundary condition and the potentials qk(x) are prescribed on the interval [pi/2(1 - alpha), pi] for some alpha is an element of (0, 1), then parts of spectra S subset of sigma(L) are enough to determine the potentials q(k)(x) on the whole interval [0, pi] and another boundary condition. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Khalili, Yasser; Baleanu, Dumitru (2020). "Recovering differential pencils with spectral boundary conditions and spectral jump conditions", Journal of Inequalities and Applications, Vol. 2020, No. 1. | en_US |
dc.identifier.doi | 10.1186/s13660-020-02537-z | |
dc.identifier.issn | 1029-242X | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85099514471 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1186/s13660-020-02537-z | |
dc.identifier.volume | 2020 | en_US |
dc.identifier.wos | WOS:000601171300001 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 5 | |
dc.subject | Inverse Problem | en_US |
dc.subject | Differential Pencil | en_US |
dc.subject | Spectral Boundary Condition | en_US |
dc.subject | Spectral Jump Condition | en_US |
dc.title | Recovering differential pencils with spectral boundary conditions and spectral jump conditions | tr_TR |
dc.title | Recovering Differential Pencils With Spectral Boundary Conditions and Spectral Jump Conditions | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 5 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |