Optimization of Coronavirus Pandemic Model Through Artificial Intelligence
| dc.contributor.author | Nasir, Arooj | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Raza, Ali | |
| dc.contributor.author | Cheema, Tahir Nawaz | |
| dc.contributor.author | Ahmed, Nauman | |
| dc.contributor.author | Mahmoud, Emad E. | |
| dc.contributor.author | Alqarni, Manal. M. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.date.accessioned | 2024-01-18T13:09:02Z | |
| dc.date.accessioned | 2025-09-18T13:27:04Z | |
| dc.date.available | 2024-01-18T13:09:02Z | |
| dc.date.available | 2025-09-18T13:27:04Z | |
| dc.date.issued | 2023 | |
| dc.description | Rafiq, Muhammad/0000-0002-2165-3479 | en_US |
| dc.description.abstract | Artificial intelligence is demonstrated by machines, unlike the natural intelligence displayed by animals, including humans. Artificial intelligence research has been defined as the field of study of intelligent agents, which refers to any system that perceives its environment and takes actions that maximize its chance of achieving its goals. The techniques of intelligent computing solve many applications of mathematical modeling. The research work was designed via a particular method of artificial neural networks to solve the mathematical model of coronavirus. The representation of the mathematical model is made via systems of nonlinear ordinary differential equations. These differential equations are established by collecting the susceptible, the exposed, the symptomatic, super spreaders, infection with asymptomatic, hospitalized, recovery, and fatality classes. The generation of the coronavirus model's dataset is exploited by the strength of the explicit Runge Kutta method for different countries like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, validation, and testing processes for each cyclic update in Bayesian Regularization Backpropagation for the numerical treatment of the dynamics of the desired model. The performance and effectiveness of the designed methodology are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis. | en_US |
| dc.description.sponsorship | Deanship of Scientific Research at King Khalid University [RGP.2/116/43] | en_US |
| dc.description.sponsorship | Thanks to our families and colleagues who supported us morally. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups (Project under Grant Number (RGP.2/116/43) ) . | en_US |
| dc.identifier.citation | Alqarni, Manal M.;...et.al. "Optimization of Coronavirus Pandemic Model Through Artificial Intelligence", Computers, Materials and Continua, Vol.74, No.3 pp.6807-6822. | en_US |
| dc.identifier.doi | 10.32604/cmc.2023.033283 | |
| dc.identifier.issn | 1546-2218 | |
| dc.identifier.issn | 1546-2226 | |
| dc.identifier.scopus | 2-s2.0-85145353244 | |
| dc.identifier.uri | https://doi.org/10.32604/cmc.2023.033283 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/12815 | |
| dc.language.iso | en | en_US |
| dc.publisher | Tech Science Press | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Coronavirus Model | en_US |
| dc.subject | Artificial Techniques | en_US |
| dc.subject | Analysis | en_US |
| dc.title | Optimization of Coronavirus Pandemic Model Through Artificial Intelligence | en_US |
| dc.title | Optimization of Coronavirus Pandemic Model Through Artificial Intelligence | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Rafiq, Muhammad/0000-0002-2165-3479 | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 57226241733 | |
| gdc.author.scopusid | 57821554200 | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 56072492500 | |
| gdc.author.scopusid | 57220011351 | |
| gdc.author.scopusid | 57210525245 | |
| gdc.author.scopusid | 57202090474 | |
| gdc.author.wosid | Rafiq, Muhammad/Gnw-5095-2022 | |
| gdc.author.wosid | Ahmed, Nauman/Aea-3375-2022 | |
| gdc.author.wosid | Raza, Ali/Gnp-1289-2022 | |
| gdc.author.wosid | Alqarni, Manal/Gqh-5809-2022 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Alqarni, Manal. M.] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia; [Nasir, Arooj] Baqai Med Univ, Karachi 75340, Pakistan; [Nasir, Arooj] Shalamar Med & Dent Coll, Lahore 54000, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Raza, Ali] Govt Maulana Zafar Ali Khan Grad Coll Wazirabad, Dept Math, Punjab Higher Educ Dept PHED, Lahore 54000, Pakistan; [Cheema, Tahir Nawaz] Univ Gujrat, Dept Math, Gujrat 52200, Pakistan; [Ahmed, Nauman] Univ Lahore, Dept Math & Stat, Lahore 54590, Pakistan; [Rafiq, Muhammad] Univ Cent Punjab, Fac Sci & Technol, Dept Math, Lahore 54000, Pakistan; [Fatima, Umbreen] Univ Lahore, Dept Comp Sci, Lahore 54590, Pakistan; [Mahmoud, Emad E.] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia | en_US |
| gdc.description.endpage | 6822 | en_US |
| gdc.description.issue | 3 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 6807 | en_US |
| gdc.description.volume | 74 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q3 | |
| gdc.identifier.openalex | W4313328180 | |
| gdc.identifier.wos | WOS:000911745700009 | |
| gdc.openalex.fwci | 0.17434144 | |
| gdc.openalex.normalizedpercentile | 0.46 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.wos.citedcount | 1 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |