Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Optimization of Coronavirus Pandemic Model Through Artificial Intelligence

dc.contributor.author Nasir, Arooj
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Raza, Ali
dc.contributor.author Cheema, Tahir Nawaz
dc.contributor.author Ahmed, Nauman
dc.contributor.author Mahmoud, Emad E.
dc.contributor.author Alqarni, Manal. M.
dc.contributor.authorID 56389 tr_TR
dc.date.accessioned 2024-01-18T13:09:02Z
dc.date.accessioned 2025-09-18T13:27:04Z
dc.date.available 2024-01-18T13:09:02Z
dc.date.available 2025-09-18T13:27:04Z
dc.date.issued 2023
dc.description Rafiq, Muhammad/0000-0002-2165-3479 en_US
dc.description.abstract Artificial intelligence is demonstrated by machines, unlike the natural intelligence displayed by animals, including humans. Artificial intelligence research has been defined as the field of study of intelligent agents, which refers to any system that perceives its environment and takes actions that maximize its chance of achieving its goals. The techniques of intelligent computing solve many applications of mathematical modeling. The research work was designed via a particular method of artificial neural networks to solve the mathematical model of coronavirus. The representation of the mathematical model is made via systems of nonlinear ordinary differential equations. These differential equations are established by collecting the susceptible, the exposed, the symptomatic, super spreaders, infection with asymptomatic, hospitalized, recovery, and fatality classes. The generation of the coronavirus model's dataset is exploited by the strength of the explicit Runge Kutta method for different countries like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, validation, and testing processes for each cyclic update in Bayesian Regularization Backpropagation for the numerical treatment of the dynamics of the desired model. The performance and effectiveness of the designed methodology are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis. en_US
dc.description.sponsorship Deanship of Scientific Research at King Khalid University [RGP.2/116/43] en_US
dc.description.sponsorship Thanks to our families and colleagues who supported us morally. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups (Project under Grant Number (RGP.2/116/43) ) . en_US
dc.identifier.citation Alqarni, Manal M.;...et.al. "Optimization of Coronavirus Pandemic Model Through Artificial Intelligence", Computers, Materials and Continua, Vol.74, No.3 pp.6807-6822. en_US
dc.identifier.doi 10.32604/cmc.2023.033283
dc.identifier.issn 1546-2218
dc.identifier.issn 1546-2226
dc.identifier.scopus 2-s2.0-85145353244
dc.identifier.uri https://doi.org/10.32604/cmc.2023.033283
dc.identifier.uri https://hdl.handle.net/123456789/12815
dc.language.iso en en_US
dc.publisher Tech Science Press en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Coronavirus Model en_US
dc.subject Artificial Techniques en_US
dc.subject Analysis en_US
dc.title Optimization of Coronavirus Pandemic Model Through Artificial Intelligence en_US
dc.title Optimization of Coronavirus Pandemic Model Through Artificial Intelligence tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Rafiq, Muhammad/0000-0002-2165-3479
gdc.author.institutional Baleanu, Dumitru
gdc.author.scopusid 57226241733
gdc.author.scopusid 57821554200
gdc.author.scopusid 7005872966
gdc.author.scopusid 56072492500
gdc.author.scopusid 57220011351
gdc.author.scopusid 57210525245
gdc.author.scopusid 57202090474
gdc.author.wosid Rafiq, Muhammad/Gnw-5095-2022
gdc.author.wosid Ahmed, Nauman/Aea-3375-2022
gdc.author.wosid Raza, Ali/Gnp-1289-2022
gdc.author.wosid Alqarni, Manal/Gqh-5809-2022
gdc.author.wosid Baleanu, Dumitru/B-9936-2012
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp [Alqarni, Manal. M.] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia; [Nasir, Arooj] Baqai Med Univ, Karachi 75340, Pakistan; [Nasir, Arooj] Shalamar Med & Dent Coll, Lahore 54000, Pakistan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Baleanu, Dumitru] Inst Space Sci, Magurele 077125, Romania; [Raza, Ali] Govt Maulana Zafar Ali Khan Grad Coll Wazirabad, Dept Math, Punjab Higher Educ Dept PHED, Lahore 54000, Pakistan; [Cheema, Tahir Nawaz] Univ Gujrat, Dept Math, Gujrat 52200, Pakistan; [Ahmed, Nauman] Univ Lahore, Dept Math & Stat, Lahore 54590, Pakistan; [Rafiq, Muhammad] Univ Cent Punjab, Fac Sci & Technol, Dept Math, Lahore 54000, Pakistan; [Fatima, Umbreen] Univ Lahore, Dept Comp Sci, Lahore 54590, Pakistan; [Mahmoud, Emad E.] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia en_US
gdc.description.endpage 6822 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 6807 en_US
gdc.description.volume 74 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W4313328180
gdc.identifier.wos WOS:000911745700009
gdc.openalex.fwci 0.17434144
gdc.openalex.normalizedpercentile 0.46
gdc.opencitations.count 1
gdc.plumx.mendeley 8
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files