Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A multi-objective approach for dynamic missile allocation using artificial neural networks for time sensitive decisions

dc.authorid Karasakal, Orhan/0000-0003-0320-487X
dc.authorid Karasakal, Esra/0000-0003-4095-1858
dc.authorscopusid 6504422870
dc.authorscopusid 6507642698
dc.authorscopusid 56677720200
dc.authorwosid Karasakal, Esra/Aaz-7817-2020
dc.authorwosid Karasakal, Orhan/V-6086-2019
dc.contributor.author Karasakal, Orhan
dc.contributor.author Karasakal, Orhan
dc.contributor.author Karasakal, Esra
dc.contributor.author Silav, Ahmet
dc.contributor.authorID 216553 tr_TR
dc.contributor.other Endüstri Mühendisliği
dc.date.accessioned 2022-02-23T08:06:38Z
dc.date.available 2022-02-23T08:06:38Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Karasakal, Orhan] Cankaya Univ, Ind Engn Dept, Ankara, Turkey; [Karasakal, Esra; Silav, Ahmet] Middle East Tech Univ, Ind Engn Dept, Ankara, Turkey en_US
dc.description Karasakal, Orhan/0000-0003-0320-487X; Karasakal, Esra/0000-0003-4095-1858 en_US
dc.description.abstract In this study, we develop a new solution approach for the dynamic missile allocation problem of a naval task group (TG). The approach considers the rescheduling of the surface-to-air missiles (SAMs), where a set of them have already been scheduled to a set of attacking anti-ship missiles (ASMs). The initial schedule is mostly inexecutable due to disruptions such as neutralization of a target ASM, detecting a new ASM, and breakdown of a SAM system. To handle the dynamic disruptions while keeping efficiency high, we use a bi-objective model that considers the efficiency of SAM systems and the stability of the schedule simultaneously. The rescheduling decision is time-sensitive, and the amount of information to be processed is enormous. Thus, we propose a novel approach that supplements the decision-maker (DM) in choosing a Pareto optimal solution considering two conflicting objectives. The proposed approach uses an artificial neural network (ANN) that includes an adaptive learning algorithm to structure the DM's prior articulated preferences. ANN acts like a DM during the engagement process and chooses one of the non-dominated solutions in each rescheduling time point. We assume that the DM's utility function is consistent with a non-decreasing quasi-concave function, and the cone domination principle is incorporated into the solution procedure. An extensive computational study is provided to present the effectiveness of the proposed approach. en_US
dc.description.publishedMonth 8
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Karasakal, Orhan; Karasakal, Esra; Silav, Ahmet (2021). "A multi-objective approach for dynamic missile allocation using artificial neural networks for time sensitive decisions", Soft Computing, Vol. 25, No. 15, pp. 10153-10166. en_US
dc.identifier.doi 10.1007/s00500-021-05923-x
dc.identifier.endpage 10166 en_US
dc.identifier.issn 1432-7643
dc.identifier.issn 1433-7479
dc.identifier.issue 15 en_US
dc.identifier.scopus 2-s2.0-85107454216
dc.identifier.scopusquality Q1
dc.identifier.startpage 10153 en_US
dc.identifier.uri https://doi.org/10.1007/s00500-021-05923-x
dc.identifier.volume 25 en_US
dc.identifier.wos WOS:000659438600002
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 11
dc.subject Dynamic Weapon Target Allocation Problem en_US
dc.subject Air Defense en_US
dc.subject Rescheduling en_US
dc.subject Artificial Neural Network en_US
dc.title A multi-objective approach for dynamic missile allocation using artificial neural networks for time sensitive decisions tr_TR
dc.title A Multi-Objective Approach for Dynamic Missile Allocation Using Artificial Neural Networks for Time Sensitive Decisions en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication f5641d3f-4d57-459d-9b86-9e727ec25ad1
relation.isAuthorOfPublication.latestForDiscovery f5641d3f-4d57-459d-9b86-9e727ec25ad1
relation.isOrgUnitOfPublication b13b59c3-89ea-4b50-b3b2-394f7f057cf8
relation.isOrgUnitOfPublication.latestForDiscovery b13b59c3-89ea-4b50-b3b2-394f7f057cf8

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: