Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classes of operators in fractional calculus: A case study

dc.authorid Fernandez, Arran/0000-0002-1491-1820
dc.authorscopusid 57193722100
dc.authorscopusid 7005872966
dc.authorwosid Fernandez, Arran/E-7134-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.contributor.author Fernandez, Arran
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-03-24T12:05:19Z
dc.date.available 2022-03-24T12:05:19Z
dc.date.issued 2021
dc.department Çankaya University en_US
dc.department-temp [Fernandez, Arran] Eastern Mediterranean Univ, Fac Arts & Sci, Dept Math, Via Mersin 10, Famagusta, Northern Cyprus, Turkey; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
dc.description Fernandez, Arran/0000-0002-1491-1820 en_US
dc.description.abstract The notion of general classes of operators has recently been proposed as an approach to fractional calculus that respects pure and applied viewpoints equally. Here we demonstrate this approach as it applies to the operators with three-parameter Mittag-Leffler kernels defined by Prabhakar in 1971. By considering the general such operator as a class, we are able to better understand its fundamental nature and the different special cases that emerge. In particular, we show that many other named models of fractional calculus can fit within the class of operators defined by Prabhakar and that this class contains both singular and nonsingular operators together. We characterise completely the cases in which these operators are singular or nonsingular and the cases in which they can be written as finite or infinite sums of Riemann-Liouville differintegrals, to obtain finally a catalogue of subclasses with different types of properties. en_US
dc.description.publishedMonth 7
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Fernandez, Arran; Baleanu, Dumitru (2021). "Classes of operators in fractional calculus: A case study", Mathematical Methods in the Applied Sciences, Vol. 44, No. 11, pp. 9143-9162. en_US
dc.identifier.doi 10.1002/mma.7341
dc.identifier.endpage 9162 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 11 en_US
dc.identifier.scopus 2-s2.0-85102743392
dc.identifier.scopusquality Q1
dc.identifier.startpage 9143 en_US
dc.identifier.uri https://doi.org/10.1002/mma.7341
dc.identifier.volume 44 en_US
dc.identifier.wos WOS:000630962400001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 47
dc.subject Fractional Derivatives And Integrals en_US
dc.subject Prabhakar Fractional Calculus en_US
dc.subject Singular And Non&#8208 en_US
dc.subject Singular Integrals en_US
dc.title Classes of operators in fractional calculus: A case study tr_TR
dc.title Classes of Operators in Fractional Calculus: a Case Study en_US
dc.type Article en_US
dc.wos.citedbyCount 47
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: