Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Approximate solutions to the conformable Rosenau-Hyman equation using the two-step Adomian decomposition method with Pade approximation

dc.authorid Inc, Mustafa/0000-0003-4996-8373
dc.authorid Isa Aliyu, Aliyu/0000-0002-9756-7374
dc.authorid Yusuf, Abdullahi/0000-0002-8308-7943
dc.authorscopusid 58486733300
dc.authorscopusid 57199279247
dc.authorscopusid 56051853500
dc.authorscopusid 57193690600
dc.authorscopusid 7005872966
dc.authorwosid Akgül, Ali/F-3909-2019
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Inc, Mustafa/C-4307-2018
dc.authorwosid Isa Aliyu, Aliyu/L-3765-2017
dc.authorwosid Yusuf, Abdullahi/L-9956-2018
dc.contributor.author Akgul, Ali
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Aliyu, Aliyu Isa
dc.contributor.author Inc, Mustafa
dc.contributor.author Yusuf, Abdullahi
dc.contributor.author Baleanu, Dumitru
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2020-01-30T13:02:43Z
dc.date.available 2020-01-30T13:02:43Z
dc.date.issued 2020
dc.department Çankaya University en_US
dc.department-temp [Akgul, Ali] Siirt Univ, Dept Math, Art & Sci Fac, TR-56100 Siirt, Turkey; [Aliyu, Aliyu Isa] Sun Yat Sen Univ, Dept Math, Guangzhou, Guangdong, Peoples R China; [Inc, Mustafa; Yusuf, Abdullahi] Firat Univ, Sci Fac, Dept Math, Elazig, Turkey; [Yusuf, Abdullahi] Fed Univ Dutse, Sci Fac, Dept Math, Dutse, Nigeria; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania en_US
dc.description Inc, Mustafa/0000-0003-4996-8373; Isa Aliyu, Aliyu/0000-0002-9756-7374; Yusuf, Abdullahi/0000-0002-8308-7943 en_US
dc.description.abstract This paper adopts the Adomian decomposition method and the Pade approximation techniques to derive the approximate solutions of a conformable Rosenau-Hyman equation by considering the new definition of the Adomian polynomials. The Pade approximate solutions are derived along with interesting figures showing both the analytic and approximate solutions. en_US
dc.description.publishedMonth 10
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Akgul, Ali...et al. (2019). "Approximate solutions to the conformable Rosenau-Hyman equation using the two-step Adomian decomposition method with Pade approximation", Mathematical Methods in the Applied Sciences. en_US
dc.identifier.doi 10.1002/mma.5985
dc.identifier.endpage 7639 en_US
dc.identifier.issn 0170-4214
dc.identifier.issn 1099-1476
dc.identifier.issue 13 en_US
dc.identifier.scopus 2-s2.0-85074858570
dc.identifier.scopusquality Q1
dc.identifier.startpage 7632 en_US
dc.identifier.uri https://doi.org/10.1002/mma.5985
dc.identifier.volume 43 en_US
dc.identifier.wos WOS:000493074700001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 15
dc.subject Adomian Decomposition Method en_US
dc.subject Conformable Rosenau-Hyman Equation en_US
dc.subject Pade Approximation en_US
dc.title Approximate solutions to the conformable Rosenau-Hyman equation using the two-step Adomian decomposition method with Pade approximation tr_TR
dc.title Approximate Solutions To the Conformable Rosenau-Hyman Equation Using the Two-Step Adomian Decomposition Method With Pade Approximation en_US
dc.type Article en_US
dc.wos.citedbyCount 11
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: