Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mellin transform for fractional integrals with general analytic kernel

dc.authorscopusid 57209189507
dc.authorscopusid 56149647000
dc.authorscopusid 57546288300
dc.authorscopusid 56051853500
dc.authorscopusid 7005872966
dc.authorscopusid 56901415600
dc.authorwosid Alshomrani, Ali/Q-4236-2017
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Kalsoom, Amna/Lsm-2264-2024
dc.authorwosid Inc, Mustafa/C-4307-2018
dc.contributor.author Rashid, Maliha
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Kalsoom, Amna
dc.contributor.author Sager, Maria
dc.contributor.author Inc, Mustafa
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Alshomrani, Ali S.
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2024-04-25T07:31:28Z
dc.date.available 2024-04-25T07:31:28Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Rashid, Maliha; Kalsoom, Amna; Sager, Maria] Int Islamic Univ, Dept Math & Stat, Islamabad, Pakistan; [Inc, Mustafa] Biruni Univ, Dept Comp Engn, Istanbul, Turkey; [Inc, Mustafa] Firat Univ, Dept Math, TR-23119 Elazig, Turkey; [Inc, Mustafa; Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania; [Alshomrani, Ali S.] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah, Saudi Arabia en_US
dc.description.abstract Many different operators of fractional calculus have been proposed, which can be organized in some general classes of operators. According to this study, the class of fractional integrals and derivatives can be classified into two main categories, that is, with and without general analytical kernel (introduced in 2019). In this article, we define the Mellin transform for fractional differential operator with general analytic kernel in both Riemann-Liouville and Caputo derivatives of order sigma >= 0 and. be a fixed parameter. We will also establish relation between Mellin transform with Laplace and Fourier transforms. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Rashid, Maliha;...et.al. (2022). "Mellin transform for fractional integrals with general analytic kernel", AIMS Mathematics, Vol.7, No.5, pp.9443-9462. en_US
dc.identifier.doi 10.3934/math.2022524
dc.identifier.endpage 9462 en_US
dc.identifier.issn 2473-6988
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-85126934822
dc.identifier.scopusquality Q1
dc.identifier.startpage 9443 en_US
dc.identifier.uri https://doi.org/10.3934/math.2022524
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:000794129400012
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Mellin Transform en_US
dc.subject Fractional Integrals en_US
dc.subject Caputo Fractional Derivative en_US
dc.subject Laplace And Fourier Transforms en_US
dc.title Mellin transform for fractional integrals with general analytic kernel tr_TR
dc.title Mellin Transform for Fractional Integrals With General Analytic Kernel en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
289.22 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: