Mellin transform for fractional integrals with general analytic kernel
dc.authorscopusid | 57209189507 | |
dc.authorscopusid | 56149647000 | |
dc.authorscopusid | 57546288300 | |
dc.authorscopusid | 56051853500 | |
dc.authorscopusid | 7005872966 | |
dc.authorscopusid | 56901415600 | |
dc.authorwosid | Alshomrani, Ali/Q-4236-2017 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Kalsoom, Amna/Lsm-2264-2024 | |
dc.authorwosid | Inc, Mustafa/C-4307-2018 | |
dc.contributor.author | Rashid, Maliha | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Kalsoom, Amna | |
dc.contributor.author | Sager, Maria | |
dc.contributor.author | Inc, Mustafa | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Alshomrani, Ali S. | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2024-04-25T07:31:28Z | |
dc.date.available | 2024-04-25T07:31:28Z | |
dc.date.issued | 2022 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Rashid, Maliha; Kalsoom, Amna; Sager, Maria] Int Islamic Univ, Dept Math & Stat, Islamabad, Pakistan; [Inc, Mustafa] Biruni Univ, Dept Comp Engn, Istanbul, Turkey; [Inc, Mustafa] Firat Univ, Dept Math, TR-23119 Elazig, Turkey; [Inc, Mustafa; Baleanu, Dumitru] China Med Univ, Dept Med Res, Taichung, Taiwan; [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, MG-23, R-76900 Magurele, Romania; [Alshomrani, Ali S.] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah, Saudi Arabia | en_US |
dc.description.abstract | Many different operators of fractional calculus have been proposed, which can be organized in some general classes of operators. According to this study, the class of fractional integrals and derivatives can be classified into two main categories, that is, with and without general analytical kernel (introduced in 2019). In this article, we define the Mellin transform for fractional differential operator with general analytic kernel in both Riemann-Liouville and Caputo derivatives of order sigma >= 0 and. be a fixed parameter. We will also establish relation between Mellin transform with Laplace and Fourier transforms. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Rashid, Maliha;...et.al. (2022). "Mellin transform for fractional integrals with general analytic kernel", AIMS Mathematics, Vol.7, No.5, pp.9443-9462. | en_US |
dc.identifier.doi | 10.3934/math.2022524 | |
dc.identifier.endpage | 9462 | en_US |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-85126934822 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 9443 | en_US |
dc.identifier.uri | https://doi.org/10.3934/math.2022524 | |
dc.identifier.volume | 7 | en_US |
dc.identifier.wos | WOS:000794129400012 | |
dc.identifier.wosquality | Q1 | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 1 | |
dc.subject | Mellin Transform | en_US |
dc.subject | Fractional Integrals | en_US |
dc.subject | Caputo Fractional Derivative | en_US |
dc.subject | Laplace And Fourier Transforms | en_US |
dc.title | Mellin transform for fractional integrals with general analytic kernel | tr_TR |
dc.title | Mellin Transform for Fractional Integrals With General Analytic Kernel | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |