A Kamenev-type oscillation result for a linear (1+alpha)-order fractional differential equation
No Thumbnail Available
Date
2015
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Inc.
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
We investigate the eventual sign changing for the solutions of the linear equation (x((alpha)))' + q(t)x = t >= 0, when the functional coefficient q satisfies the Kamenev-type restriction lim sup 1/t epsilon integral(t)(to) (t - s)epsilon q(s)ds = +infinity for some epsilon > 2; t(0) > 0. The operator x((alpha)) is the Caputo differential operator and alpha is an element of (0, 1)
Description
Keywords
Fractional Differential Equation, Oscillatory Solution, Caputo Differential Operator, Riccati Inequality, Averaging Of Coefficients
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Baleanu, D., Mustafa, O.G., O'Regan, D. (2015). A Kamenev-type oscillation result for a linear (1+alpha)-order fractional differential equation. Applied Mathematics&Computation, 259, 374-378. http://dx.doi.org/10.1016/j.amc.2015.02.045
WoS Q
Scopus Q
Source
Applied Mathematics&Computation
Volume
259
Issue
Start Page
374
End Page
378