Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Kamenev-type oscillation result for a linear (1+alpha)-order fractional differential equation

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

We investigate the eventual sign changing for the solutions of the linear equation (x((alpha)))' + q(t)x = t >= 0, when the functional coefficient q satisfies the Kamenev-type restriction lim sup 1/t epsilon integral(t)(to) (t - s)epsilon q(s)ds = +infinity for some epsilon > 2; t(0) > 0. The operator x((alpha)) is the Caputo differential operator and alpha is an element of (0, 1)

Description

Keywords

Fractional Differential Equation, Oscillatory Solution, Caputo Differential Operator, Riccati Inequality, Averaging Of Coefficients

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Baleanu, D., Mustafa, O.G., O'Regan, D. (2015). A Kamenev-type oscillation result for a linear (1+alpha)-order fractional differential equation. Applied Mathematics&Computation, 259, 374-378. http://dx.doi.org/10.1016/j.amc.2015.02.045

WoS Q

Scopus Q

Source

Applied Mathematics&Computation

Volume

259

Issue

Start Page

374

End Page

378