Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On a problem for the nonlinear diffusion equation with conformable time derivative

dc.authorid Nguyen, Huu-Can/0000-0001-6198-1015
dc.authorid Au, Vo Van/0000-0002-7744-0827
dc.authorscopusid 57193793032
dc.authorscopusid 7005872966
dc.authorscopusid 35478971200
dc.authorscopusid 57216572393
dc.authorwosid Baleanu, Dumitru/B-9936-2012
dc.authorwosid Au, Vo Van/Aad-5554-2020
dc.authorwosid Zhou, Yong/K-7875-2015
dc.authorwosid Nguyen, Huu-Can/R-4820-2018
dc.contributor.author Au, Vo Van
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Zhou, Yong
dc.contributor.author Huu Can, Nguyen
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-10-06T12:09:48Z
dc.date.available 2022-10-06T12:09:48Z
dc.date.issued 2022
dc.department Çankaya University en_US
dc.department-temp [Au, Vo Van] Duy Tan Univ, Inst Fundamental & Appl Sci, Ho Chi Minh City, Vietnam; [Au, Vo Van] Duy Tan Univ, Fac Nat Sci, Da Nang, Vietnam; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania; [Zhou, Yong] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan, Hunan, Peoples R China; [Zhou, Yong] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math Res Grp, Jeddah, Saudi Arabia; [Huu Can, Nguyen] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam en_US
dc.description Nguyen, Huu-Can/0000-0001-6198-1015; Au, Vo Van/0000-0002-7744-0827 en_US
dc.description.abstract In this paper, we study a nonlinear diffusion equation with conformable derivative: D-t((alpha)) u = Delta u = L(x, t; u(x, t)), where 0 < alpha < 1, (x, t) is an element of Omega x (0, T). We consider both of the problems: Initial value problem: the solution contains the integral I = integral(t)(0) tau(gamma) d tau (critical as gamma <= -1). Final value problem: not well-posed (if the solution exists it does not depend continuously on the given data). For the initial value problem, the lack of convergence of the integral I, for gamma <= -1. The existence for the solution is represented. For the final value problem, the Hadamard instability occurs, we propose two regularization methods to solve the nonlinear problem in case the source term is a Lipschitz function. The results of existence, uniqueness and stability of the regularized problem are obtained. We also develop some new techniques on functional analysis to propose regularity estimates of regularized solution. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Au, Vo Van...et al. (2022). "On a problem for the nonlinear diffusion equation with conformable time derivative", Applicable Analysis, Vol. 101, No. 17, pp. 6255-6279. en_US
dc.identifier.doi 10.1080/00036811.2021.1921155
dc.identifier.endpage 6279 en_US
dc.identifier.issn 0003-6811
dc.identifier.issn 1563-504X
dc.identifier.issue 17 en_US
dc.identifier.scopus 2-s2.0-85105382371
dc.identifier.scopusquality Q2
dc.identifier.startpage 6255 en_US
dc.identifier.uri https://doi.org/10.1080/00036811.2021.1921155
dc.identifier.volume 101 en_US
dc.identifier.wos WOS:000647400600001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 5
dc.subject Conformable Derivative en_US
dc.subject Existence en_US
dc.subject Regularity en_US
dc.subject Direct Problems en_US
dc.subject Inverse Problems en_US
dc.title On a problem for the nonlinear diffusion equation with conformable time derivative tr_TR
dc.title On a Problem for the Nonlinear Diffusion Equation With Conformable Time Derivative en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: