A Chebyshev Spectral Method Based on Operational Matrix for Fractional Differential Equations Involving Non-Singular Mittag-Leffler Kernel
| dc.contributor.author | Shiri, B. | |
| dc.contributor.author | Srivastava, H. M. | |
| dc.contributor.author | Al Qurashi, M. | |
| dc.contributor.author | Baleanu, D. | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2019-12-20T12:36:07Z | |
| dc.date.accessioned | 2025-09-18T12:47:28Z | |
| dc.date.available | 2019-12-20T12:36:07Z | |
| dc.date.available | 2025-09-18T12:47:28Z | |
| dc.date.issued | 2018 | |
| dc.description | Shiri, Babak/0000-0003-2249-282X | en_US |
| dc.description.abstract | In this paper, we solve a system of fractional differential equations within a fractional derivative involving the Mittag-Leffler kernel by using the spectral methods. We apply the Chebyshev polynomials as a base and obtain the necessary operational matrix of fractional integral using the Clenshaw-Curtis formula. By applying the operational matrix, we obtain a system of linear algebraic equations. The approximate solution is computed by solving this system. The regularity of the solution investigated and a convergence analysis is provided. Numerical examples are provided to show the effectiveness and efficiency of the method. | en_US |
| dc.description.publishedMonth | 10 | |
| dc.identifier.citation | Baleanu, D...et al. (2018). A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel, Advances in Difference Equations. | en_US |
| dc.identifier.doi | 10.1186/s13662-018-1822-5 | |
| dc.identifier.issn | 1687-1847 | |
| dc.identifier.scopus | 2-s2.0-85054485351 | |
| dc.identifier.uri | https://doi.org/10.1186/s13662-018-1822-5 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/11814 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Chebyshev Polynomials | en_US |
| dc.subject | System Of Fractional Differential Equations | en_US |
| dc.subject | Operational Matrices | en_US |
| dc.subject | Mittag-Leffler Function | en_US |
| dc.subject | Clenshaw-Curtis Formula | en_US |
| dc.title | A Chebyshev Spectral Method Based on Operational Matrix for Fractional Differential Equations Involving Non-Singular Mittag-Leffler Kernel | en_US |
| dc.title | A Chebyshev spectral method based on operational matrix for fractional differential equations involving non-singular Mittag-Leffler kernel | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Shiri, Babak/0000-0003-2249-282X | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 55614612800 | |
| gdc.author.scopusid | 23152241800 | |
| gdc.author.scopusid | 57045880100 | |
| gdc.author.wosid | Srivastava, Hari/N-9532-2013 | |
| gdc.author.wosid | Shiri, Babak/T-7172-2019 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, D.] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, D.] Inst Space Sci, Magurele, Romania; [Shiri, B.] Univ Tabriz, Fac Math Sci, Tabriz, Iran; [Srivastava, H. M.] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada; [Srivastava, H. M.] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan; [Al Qurashi, M.] King Saud Univ, Coll Sci, Dept Math, Riyadh, Saudi Arabia | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2895613201 | |
| gdc.identifier.wos | WOS:000449301100003 | |
| gdc.openalex.fwci | 9.42542326 | |
| gdc.openalex.normalizedpercentile | 0.99 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 78 | |
| gdc.plumx.crossrefcites | 62 | |
| gdc.plumx.mendeley | 9 | |
| gdc.plumx.scopuscites | 102 | |
| gdc.scopus.citedcount | 102 | |
| gdc.wos.citedcount | 74 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |