Sparse coding of hyperspectral imagery using online learning
dc.contributor.author | Ülkü, İrem | |
dc.contributor.author | Töreyin, Behçet Uğur | |
dc.contributor.authorID | 17575 | tr_TR |
dc.contributor.authorID | 19325 | tr_TR |
dc.date.accessioned | 2017-03-09T12:53:43Z | |
dc.date.available | 2017-03-09T12:53:43Z | |
dc.date.issued | 2015 | |
dc.department | Çankaya Üniversitesi, Mühendislik Fakültesi, Elektrik Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Sparse coding ensures to express the data in terms of a few nonzero dictionary elements. Since the data size is large for hyperspectral imagery, it is reasonable to use sparse coding for compression of hyperspectral images. In this paper, a hyperspectral image compression method is proposed using a discriminative online learning-based sparse coding algorithm. Compression and anomaly detection tests are performed on hyperspectral images from the AVIRIS dataset. Comparative rate-distortion analyses indicate that the proposed method is superior to the state-of-the-art hyperspectral compression techniques. | en_US |
dc.description.publishedMonth | 5 | |
dc.identifier.citation | Ülkü, İ., Töreyin, B.U. (2015). Sparse coding of hyperspectral imagery using online learning. Signal Image And Video Processing, 9(4), 959-966. http://dx.doi.org/10.1007/s11760-015-0753-9 | en_US |
dc.identifier.doi | 10.1007/s11760-015-0753-9 | |
dc.identifier.endpage | 966 | en_US |
dc.identifier.issn | 1863-1703 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 959 | en_US |
dc.identifier.uri | http://hdl.handle.net/20.500.12416/1423 | |
dc.identifier.volume | 9 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Signal Image And Video Processing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Sparse Coding | en_US |
dc.subject | Hyperspectral Imagery | en_US |
dc.subject | Anomaly Detection | en_US |
dc.subject | Online Learning | en_US |
dc.title | Sparse coding of hyperspectral imagery using online learning | tr_TR |
dc.title | Sparse Coding of Hyperspectral Imagery Using Online Learning | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: