Sparse coding of hyperspectral imagery using online learning
dc.authorid | Toreyin, Behcet Ugur/0000-0003-4406-2783 | |
dc.authorscopusid | 57219399185 | |
dc.authorscopusid | 9249500700 | |
dc.authorwosid | Ulku,, Irem/Ahd-8857-2022 | |
dc.authorwosid | Toreyin, Behcet Ugur/A-6780-2012 | |
dc.contributor.author | Ulku, Irem | |
dc.contributor.author | Töreyin, Behçet Uğur | |
dc.contributor.author | Toreyin, Behcet Ugur | |
dc.contributor.authorID | 17575 | tr_TR |
dc.contributor.authorID | 19325 | tr_TR |
dc.contributor.other | Elektrik-Elektronik Mühendisliği | |
dc.date.accessioned | 2017-03-09T12:53:43Z | |
dc.date.available | 2017-03-09T12:53:43Z | |
dc.date.issued | 2015 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Ulku, Irem; Toreyin, Behcet Ugur] Cankaya Univ, Dept Elect & Elect Engn, TR-06790 Ankara, Turkey; [Toreyin, Behcet Ugur] Sci & Technol Res Council Turkey TUBITAK, Space Technol Inst UZAY, TR-06800 Ankara, Turkey | en_US |
dc.description | Toreyin, Behcet Ugur/0000-0003-4406-2783 | en_US |
dc.description.abstract | Sparse coding ensures to express the data in terms of a few nonzero dictionary elements. Since the data size is large for hyperspectral imagery, it is reasonable to use sparse coding for compression of hyperspectral images. In this paper, a hyperspectral image compression method is proposed using a discriminative online learning-based sparse coding algorithm. Compression and anomaly detection tests are performed on hyperspectral images from the AVIRIS dataset. Comparative rate-distortion analyses indicate that the proposed method is superior to the state-of-the-art hyperspectral compression techniques. | en_US |
dc.description.publishedMonth | 5 | |
dc.description.sponsorship | Scientific and Technical Research Council of Turkey under National Young Researchers Career Development Program (3501 TUBITAK CAREER) grant [114E200] | en_US |
dc.description.sponsorship | This work is supported in part by the Scientific and Technical Research Council of Turkey under National Young Researchers Career Development Program (3501 TUBITAK CAREER) grant with agreement number 114E200. Authors are grateful to Mustafa Teke for his assistance in obtaining RX detection results. An earlier version of this study was presented in part at the IEEE International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) 2014 [17]. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Ülkü, İ., Töreyin, B.U. (2015). Sparse coding of hyperspectral imagery using online learning. Signal Image And Video Processing, 9(4), 959-966. http://dx.doi.org/10.1007/s11760-015-0753-9 | en_US |
dc.identifier.doi | 10.1007/s11760-015-0753-9 | |
dc.identifier.endpage | 966 | en_US |
dc.identifier.issn | 1863-1703 | |
dc.identifier.issn | 1863-1711 | |
dc.identifier.issue | 4 | en_US |
dc.identifier.scopus | 2-s2.0-84925500335 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 959 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11760-015-0753-9 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:000351588900020 | |
dc.identifier.wosquality | Q3 | |
dc.language.iso | en | en_US |
dc.publisher | Springer London Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 10 | |
dc.subject | Sparse Coding | en_US |
dc.subject | Hyperspectral Imagery | en_US |
dc.subject | Anomaly Detection | en_US |
dc.subject | Online Learning | en_US |
dc.title | Sparse coding of hyperspectral imagery using online learning | tr_TR |
dc.title | Sparse Coding of Hyperspectral Imagery Using Online Learning | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 8 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 31d067df-3d94-4058-a635-943b70f82ea4 | |
relation.isAuthorOfPublication.latestForDiscovery | 31d067df-3d94-4058-a635-943b70f82ea4 | |
relation.isOrgUnitOfPublication | a8b0a996-7c01-41a1-85be-843ba585ef45 | |
relation.isOrgUnitOfPublication.latestForDiscovery | a8b0a996-7c01-41a1-85be-843ba585ef45 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: