Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Sparse coding of hyperspectral imagery using online learning

dc.authorid Toreyin, Behcet Ugur/0000-0003-4406-2783
dc.authorscopusid 57219399185
dc.authorscopusid 9249500700
dc.authorwosid Ulku,, Irem/Ahd-8857-2022
dc.authorwosid Toreyin, Behcet Ugur/A-6780-2012
dc.contributor.author Ulku, Irem
dc.contributor.author Töreyin, Behçet Uğur
dc.contributor.author Toreyin, Behcet Ugur
dc.contributor.authorID 17575 tr_TR
dc.contributor.authorID 19325 tr_TR
dc.contributor.other Elektrik-Elektronik Mühendisliği
dc.date.accessioned 2017-03-09T12:53:43Z
dc.date.available 2017-03-09T12:53:43Z
dc.date.issued 2015
dc.department Çankaya University en_US
dc.department-temp [Ulku, Irem; Toreyin, Behcet Ugur] Cankaya Univ, Dept Elect & Elect Engn, TR-06790 Ankara, Turkey; [Toreyin, Behcet Ugur] Sci & Technol Res Council Turkey TUBITAK, Space Technol Inst UZAY, TR-06800 Ankara, Turkey en_US
dc.description Toreyin, Behcet Ugur/0000-0003-4406-2783 en_US
dc.description.abstract Sparse coding ensures to express the data in terms of a few nonzero dictionary elements. Since the data size is large for hyperspectral imagery, it is reasonable to use sparse coding for compression of hyperspectral images. In this paper, a hyperspectral image compression method is proposed using a discriminative online learning-based sparse coding algorithm. Compression and anomaly detection tests are performed on hyperspectral images from the AVIRIS dataset. Comparative rate-distortion analyses indicate that the proposed method is superior to the state-of-the-art hyperspectral compression techniques. en_US
dc.description.publishedMonth 5
dc.description.sponsorship Scientific and Technical Research Council of Turkey under National Young Researchers Career Development Program (3501 TUBITAK CAREER) grant [114E200] en_US
dc.description.sponsorship This work is supported in part by the Scientific and Technical Research Council of Turkey under National Young Researchers Career Development Program (3501 TUBITAK CAREER) grant with agreement number 114E200. Authors are grateful to Mustafa Teke for his assistance in obtaining RX detection results. An earlier version of this study was presented in part at the IEEE International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM) 2014 [17]. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citation Ülkü, İ., Töreyin, B.U. (2015). Sparse coding of hyperspectral imagery using online learning. Signal Image And Video Processing, 9(4), 959-966. http://dx.doi.org/10.1007/s11760-015-0753-9 en_US
dc.identifier.doi 10.1007/s11760-015-0753-9
dc.identifier.endpage 966 en_US
dc.identifier.issn 1863-1703
dc.identifier.issn 1863-1711
dc.identifier.issue 4 en_US
dc.identifier.scopus 2-s2.0-84925500335
dc.identifier.scopusquality Q2
dc.identifier.startpage 959 en_US
dc.identifier.uri https://doi.org/10.1007/s11760-015-0753-9
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:000351588900020
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 10
dc.subject Sparse Coding en_US
dc.subject Hyperspectral Imagery en_US
dc.subject Anomaly Detection en_US
dc.subject Online Learning en_US
dc.title Sparse coding of hyperspectral imagery using online learning tr_TR
dc.title Sparse Coding of Hyperspectral Imagery Using Online Learning en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication
relation.isAuthorOfPublication 31d067df-3d94-4058-a635-943b70f82ea4
relation.isAuthorOfPublication.latestForDiscovery 31d067df-3d94-4058-a635-943b70f82ea4
relation.isOrgUnitOfPublication a8b0a996-7c01-41a1-85be-843ba585ef45
relation.isOrgUnitOfPublication.latestForDiscovery a8b0a996-7c01-41a1-85be-843ba585ef45

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: