Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Pure Bending of Fiber Reinforced Curved Beam at the Failure Limit

dc.authorscopusid 57222479763
dc.authorscopusid 6505917476
dc.authorscopusid 57211405451
dc.authorwosid Korkut, İhsan/Aae-2045-2020
dc.contributor.author Farukoglu, Omer Can
dc.contributor.author Korkut, Ihsan
dc.contributor.author Motameni, Ali
dc.date.accessioned 2025-05-11T17:22:27Z
dc.date.available 2025-05-11T17:22:27Z
dc.date.issued 2023
dc.department Çankaya University en_US
dc.department-temp [Farukoglu, Omer Can; Korkut, Ihsan] Gazi Univ, Dept Mfg Engn, Ankara, Turkiye; [Farukoglu, Omer Can; Motameni, Ali] Cankaya Univ, Dept Mech Engn, Ankara, Turkiye; [Motameni, Ali] Middle East Tech Univ, Dept Met & Mat Engn, Ankara, Turkiye en_US
dc.description.abstract The purpose of this research is to study the limit failure stresses occurring on the rectangular cross section fiber reinforced curved beam subjected to couple moment at the ends of the geometry. Utilizing analytical methods, closed form solutions are obtained for plane stress conditions. Considering different parameters such as the radial thickness and fiber volume of the beam, stress and displacement fields are investigated in detail. Employing different failure criteria, Tsai-Wu and Norris, calculated failure limit moment and failure location differences in the beam are analyzed. Moreover, various transverse Young's modulus estimation methods available in the literature, Halpin-Tsai, Rule of Mixture, and Chamis, are considered. Effects of these estimations on the aforementioned fields are carefully handled as well. Using the material properties of glass fiber/epoxy constituents, numerical examples are generated by incorporating semi-analytical effective material property calculation models. Achieved numerical results have revealed that the radial thickness of the beam has more influence than fiber volume in terms of failure moment and stresses. Application of different criteria may cause different failure location acquisitions while mildly changing the limit failure moment. Young's modulus estimation influences the radial displacement prominently. In addition to the acquired results, from a general perspective, this study can be used as a benchmark model for failure stress analysis of related structures and may be expanded with appropriate numerical techniques. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s00419-023-02420-5
dc.identifier.endpage 2981 en_US
dc.identifier.issn 0939-1533
dc.identifier.issn 1432-0681
dc.identifier.issue 7 en_US
dc.identifier.scopus 2-s2.0-85153332554
dc.identifier.scopusquality Q2
dc.identifier.startpage 2965 en_US
dc.identifier.uri https://doi.org/10.1007/s00419-023-02420-5
dc.identifier.uri https://hdl.handle.net/20.500.12416/9689
dc.identifier.volume 93 en_US
dc.identifier.wos WOS:000974764500001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Curved Beam en_US
dc.subject Fiber Reinforced Beam en_US
dc.subject Stress Field en_US
dc.subject Stress Analysis en_US
dc.subject Pure Bending en_US
dc.title Pure Bending of Fiber Reinforced Curved Beam at the Failure Limit en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication

Files