NUMERICAL INVESTIGATION OF SPACE FRACTIONAL ORDER DIFFUSION EQUATION BY THE CHEBYSHEV COLLOCATION METHOD OF THE FOURTH KIND AND COMPACT FINITE DIFFERENCE SCHEME
dc.authorid | Jafari, Hossein/0000-0001-6807-6675 | |
dc.authorscopusid | 57214896961 | |
dc.authorscopusid | 57190405037 | |
dc.authorscopusid | 57225075464 | |
dc.authorscopusid | 26642881400 | |
dc.authorscopusid | 7005872966 | |
dc.authorwosid | Baleanu, Dumitru/B-9936-2012 | |
dc.authorwosid | Jafari, Hossein/E-9912-2016 | |
dc.contributor.author | Aghdam, Yones Esmaeelzade | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Safdari, Hamid | |
dc.contributor.author | Azari, Yaqub | |
dc.contributor.author | Jafari, Hossein | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.authorID | 56389 | tr_TR |
dc.contributor.other | Matematik | |
dc.date.accessioned | 2022-08-23T08:01:47Z | |
dc.date.available | 2022-08-23T08:01:47Z | |
dc.date.issued | 2021 | |
dc.department | Çankaya University | en_US |
dc.department-temp | [Aghdam, Yones Esmaeelzade; Safdari, Hamid; Azari, Yaqub] Shahid Rajaee Teacher Training Univ, Dept Math, Tehran, Iran; [Jafari, Hossein] Univ Mazandaran, Dept Math, Babolsar, Iran; [Jafari, Hossein] Univ South Africa UNISA, Dept Math Sci, ZA-0003 Pretoria, South Africa; [Baleanu, Dumitru] Cankaya Univ, Dept Math, Ankara, Turkey; [Baleanu, Dumitru] Inst Space Sci, Magurele, Romania | en_US |
dc.description | Jafari, Hossein/0000-0001-6807-6675 | en_US |
dc.description.abstract | This paper develops a numerical scheme for finding the approximate solution of space fractional order of the diffusion equation (SFODE). Firstly, the compact finite difference (CFD) with convergence order O(delta tau 2) is used for discretizing time derivative. Afterwards, the spatial fractional derivative is approximated by the Chebyshev collocation method of the fourth kind. Furthermore, time-discrete stability and convergence analysis are presented. Finally, two examples are numerically investigated by the proposed method. The examples illustrate the performance and accuracy of our method compared to existing methods presented in the literature. 1. Introduction. One of the issues which have garnered researchers' attention these days is the fractional differential equations (FDEs) and have been numerically investigated by a huge number of authors [2, 3, 8, 9, 16, 21, 23, 25, 28, 29]. Fractional calculus is involved in many applications of science and engineering such as economics, physics, optimal control, and other applications, see [10, 11, 13, 19, 22, 26, 33, 34, 35]. A case in point is the diffusion and reaction-diffusion models in | en_US |
dc.description.publishedMonth | 7 | |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citation | Aghdam, Yones Esmaeelzade...et al. (2021). "NUMERICAL INVESTIGATION OF SPACE FRACTIONAL ORDER DIFFUSION EQUATION BY THE CHEBYSHEV COLLOCATION METHOD OF THE FOURTH KIND AND COMPACT FINITE DIFFERENCE SCHEME". DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S. Vol: 14, No: 7, pp 2025-2039. | en_US |
dc.identifier.doi | 10.3934/dcdss.2020402 | |
dc.identifier.endpage | 2039 | en_US |
dc.identifier.issn | 1937-1632 | |
dc.identifier.issn | 1937-1179 | |
dc.identifier.issue | 7 | en_US |
dc.identifier.scopus | 2-s2.0-85109106460 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 2025 | en_US |
dc.identifier.uri | https://doi.org/10.3934/dcdss.2020402 | |
dc.identifier.volume | 14 | en_US |
dc.identifier.wos | WOS:000661878900002 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems - Series S | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 13 | |
dc.subject | Space Fractional Order Diffusion Equation | en_US |
dc.subject | Compact Finite Difference | en_US |
dc.subject | Chebyshev Collocation Method Of The Fourth Kind | en_US |
dc.subject | Convergence | en_US |
dc.subject | Stability | en_US |
dc.title | NUMERICAL INVESTIGATION OF SPACE FRACTIONAL ORDER DIFFUSION EQUATION BY THE CHEBYSHEV COLLOCATION METHOD OF THE FOURTH KIND AND COMPACT FINITE DIFFERENCE SCHEME | tr_TR |
dc.title | Numerical Investigation of Space Fractional Order Diffusion Equation by the Chebyshev Collocation Method of the Fourth Kind and Compact Finite Difference Scheme | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 9 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isAuthorOfPublication.latestForDiscovery | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |