Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Semigroup-Like Property for Discrete Mittag-Leffler Functions

Loading...
Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Discrete Mittag-Leffler function E.ᾱ (λ, z) of order 0 <α ≤ 1, E.1̄(λ, z) = (1 - λ)-z, l ≠ 1, satisfies the nabla Caputo fractional linear difference equation C∇0α x(t) = λx(t), x(0) = 1, t ∈ ℕ1 = {1, 2, 3,.. .}. Computations can show that the semigroup identity E.ᾱ (λ, z1)E. ᾱ (λ, z2) = E.ᾱ (λ, z1 + z2) does not hold unless λ = 0 or α = 1. In this article we develop a semigroup property for the discrete Mittag-Leffler function E.ᾱ (λ, z) in the case α ↑ 1 is just the above identity. The obtained semigroup identity will be useful to develop an operator theory for the discrete fractional Cauchy problem with order α ∈ (0, 1).

Description

Keywords

Discrete Mittag-Leffler Function, Discrete Nabla Laplace Transform, Caputo Fractional Derivative, Convolution

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Abdeljawad, T.; Jarad, F.; Baleanu, D., "A Semigroup-Like Property for Discrete Mittag-Leffler Functions", Advances in Difference Equations, Vol. 2012, (2012).

WoS Q

Scopus Q

Source

Advances in Difference Equations

Volume

2012

Issue

Start Page

End Page