Bilgilendirme: Kurulum ve veri kapsamındaki çalışmalar devam etmektedir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Mittag-Leffler Form Solutions of Natural Convection Flow of Second Grade Fluid With Exponentially Variable Temperature and Mass Diffusion Using Prabhakar Fractional Derivative

dc.contributor.author Awrejcewicz, J.
dc.contributor.author Riaz, M.B.
dc.contributor.author Jarad, F.
dc.contributor.author Rehman, A.U.
dc.date.accessioned 2024-04-25T07:35:07Z
dc.date.accessioned 2025-09-18T12:08:18Z
dc.date.available 2024-04-25T07:35:07Z
dc.date.available 2025-09-18T12:08:18Z
dc.date.issued 2022
dc.description.abstract In this article, heat source impact on unsteady magnetohydrodynamic (MHD) flows of Prabhakar-like non integer second grade fluid near an exponentially accelerated vertical plate with exponentially variable velocity, temperature and mass diffusion through a porous medium. For the sake of generalized memory effects, a new mathematical fractional model is formulated based on newly introduced Prabhakar fractional operator with generalized Fourier's law and Fick's law. This fractional model has been solved analytically and exact solutions for dimensionless velocity, concentration and energy equations are calculated in terms of Mittag-Leffler functions by employing the Laplace transformation method. Physical impacts of different parameters such as α, Pr, β, Sc, Gr, γ, Gm are studied and demonstrated graphically by Mathcad software. Furthermore, to validate our current results, some limiting models such as classical second grade model, classical Newtonian model and fractional Newtonian model are recovered from Prabhakar fractional second grade fluid. Moreover, compare the results between second grade and Newtonian fluids for both fractional and classical which shows that the movement of the viscous fluid is faster than second grade fluid. Additionally, it is visualized that for both classical second grade and viscous fluid have relatively higher velocity as compared to fractional second grade and viscous fluid. © 2022 The Authors. en_US
dc.description.sponsorship Polish National Science Centre, (2019/35/B/ST8/00980) en_US
dc.identifier.citation Rehman, Aziz Ur;...et.al. (2022). "Mittag-Leffler form solutions of natural convection flow of second grade fluid with exponentially variable temperature and mass diffusion using Prabhakar fractional derivative", Case Studies in Thermal Engineering, Vol.34. en_US
dc.identifier.doi 10.1016/j.csite.2022.102018
dc.identifier.issn 2214-157X
dc.identifier.scopus 2-s2.0-85128888642
dc.identifier.uri https://doi.org/10.1016/j.csite.2022.102018
dc.identifier.uri https://hdl.handle.net/20.500.12416/11094
dc.language.iso en en_US
dc.publisher Elsevier Ltd en_US
dc.relation.ispartof Case Studies in Thermal Engineering en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Analytical Solution en_US
dc.subject Magnetic Effect en_US
dc.subject Mittag-Leffler Functions en_US
dc.subject Physical Aspect Via Graphs en_US
dc.subject Prabhakar Derivative en_US
dc.subject Slip Conditions en_US
dc.title Mittag-Leffler Form Solutions of Natural Convection Flow of Second Grade Fluid With Exponentially Variable Temperature and Mass Diffusion Using Prabhakar Fractional Derivative en_US
dc.title Mittag-Leffler form solutions of natural convection flow of second grade fluid with exponentially variable temperature and mass diffusion using Prabhakar fractional derivative tr_TR
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 57212548674
gdc.author.scopusid 7007114678
gdc.author.scopusid 57213314244
gdc.author.scopusid 15622742900
gdc.author.yokid 234808
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Çankaya University en_US
gdc.description.departmenttemp Rehman A.U., Department of Mathematics, University of Management and Technology, Lahore, Pakistan; Awrejcewicz J., Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego St., Lodz, 90-924, Poland; Riaz M.B., Department of Mathematics, University of Management and Technology, Lahore, Pakistan, Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowskiego St., Lodz, 90-924, Poland; Jarad F., Department of Mathematics, Çankaya Uiversity, Etimesgut, Ankara, 06790, Turkey, Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia, Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 102018
gdc.description.volume 34 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4226381488
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 18.0
gdc.oaire.influence 3.2717296E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Analytical solution
gdc.oaire.keywords Prabhakar derivative
gdc.oaire.keywords Slip conditions
gdc.oaire.keywords Mittag-leffler functions
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords Physical aspect via graphs
gdc.oaire.keywords Magnetic effect
gdc.oaire.popularity 1.5968988E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0203 mechanical engineering
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 2.10895003
gdc.openalex.normalizedpercentile 0.81
gdc.opencitations.count 17
gdc.plumx.crossrefcites 18
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 19
gdc.publishedmonth 6
gdc.scopus.citedcount 19
gdc.virtual.author Jarad, Fahd
relation.isAuthorOfPublication c818455d-5734-4abd-8d29-9383dae37406
relation.isAuthorOfPublication.latestForDiscovery c818455d-5734-4abd-8d29-9383dae37406
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication 28fb8edb-0579-4584-a2d4-f5064116924a
relation.isOrgUnitOfPublication 0b9123e4-4136-493b-9ffd-be856af2cdb1
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files