On Convexity Analysis for Discrete Delta Riemann-Liouville Fractional Differences Analytically and Numerically
| dc.contributor.author | Srivastava, Hari Mohan | |
| dc.contributor.author | Al-Sarairah, Eman | |
| dc.contributor.author | Abdeljawad, Thabet | |
| dc.contributor.author | Hamed, Y. S. | |
| dc.contributor.author | Baleanu, Dumitru | |
| dc.contributor.author | Mohammed, Pshtiwan Othman | |
| dc.contributor.authorID | 56389 | tr_TR |
| dc.contributor.other | 02.02. Matematik | |
| dc.contributor.other | 02. Fen-Edebiyat Fakültesi | |
| dc.contributor.other | 01. Çankaya Üniversitesi | |
| dc.date.accessioned | 2024-01-17T13:29:55Z | |
| dc.date.accessioned | 2025-09-18T12:06:03Z | |
| dc.date.available | 2024-01-17T13:29:55Z | |
| dc.date.available | 2025-09-18T12:06:03Z | |
| dc.date.issued | 2023 | |
| dc.description | Mohammed, Pshtiwan/0000-0001-6837-8075; Al-Sarairah, Eman/0000-0002-0223-4711 | en_US |
| dc.description.abstract | In this paper, we focus on the analytical and numerical convexity analysis of discrete delta Riemann-Liouville fractional differences. In the analytical part of this paper, we give a new formula for the discrete delta Riemann-Liouville fractional difference as an alternative definition. We establish a formula for the delta(2), which will be useful to obtain the convexity results. We examine the correlation between the positivity of ((RL)(w0)delta(alpha)f)(t) and convexity of the function. In view of the basic lemmas, we define two decreasing subsets of (2, 3), H(k,E )and M-k,M-E. The decrease of these sets allows us to obtain the relationship between the negative lower bound of ((RL)(w0)delta(alpha)f)(t) and convexity of the function on a finite time set N-w0(P) := {w(0), w(0) + 1, w(0) + 2, ,P}for some P is an element of N-w0 := {w(0), w(0) + 1, w(0 )+ 2,...}. The numerical part of the paper is dedicated to examinin the validity of the setsH(k,E)and M-k,M-E for different values of k and E. For this reason, we illustrate the domain of solutions via several figures explaining the validity of the main theorem. | en_US |
| dc.description.sponsorship | Taif University, Taif, Saudi Arabia [TURSP-2020/155]; Prince Sultan University through the TAS research lab | en_US |
| dc.description.sponsorship | This work was supported by the Taif University Researchers Supporting Project (No. TURSP-2020/155), Taif University, Taif, Saudi Arabia, and the fifth author would like to thank Prince Sultan University for the support through the TAS research lab. | en_US |
| dc.identifier.citation | Baleanu, D.;...et.al. (2023). "On convexity analysis for discrete delta Riemann–Liouville fractional differences analytically and numerically", Journal of Inequalities and Applications, Vol.2023, no.1. | en_US |
| dc.identifier.doi | 10.1186/s13660-023-02916-2 | |
| dc.identifier.issn | 1029-242X | |
| dc.identifier.scopus | 2-s2.0-85146234669 | |
| dc.identifier.uri | https://doi.org/10.1186/s13660-023-02916-2 | |
| dc.identifier.uri | https://hdl.handle.net/123456789/10798 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Discrete Delta Riemann-Liouville Fractional Difference | en_US |
| dc.subject | Negative Lower Bound | en_US |
| dc.subject | Convexity Analysis | en_US |
| dc.subject | Analytical And Numerical Results | en_US |
| dc.title | On Convexity Analysis for Discrete Delta Riemann-Liouville Fractional Differences Analytically and Numerically | en_US |
| dc.title | On convexity analysis for discrete delta Riemann–Liouville fractional differences analytically and numerically | tr_TR |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Mohammed, Pshtiwan/0000-0001-6837-8075 | |
| gdc.author.id | Al-Sarairah, Eman/0000-0002-0223-4711 | |
| gdc.author.institutional | Abdeljawad, Thabet | |
| gdc.author.institutional | Baleanu, Dumitru | |
| gdc.author.scopusid | 7005872966 | |
| gdc.author.scopusid | 57192416276 | |
| gdc.author.scopusid | 23152241800 | |
| gdc.author.scopusid | 34967798000 | |
| gdc.author.scopusid | 6508051762 | |
| gdc.author.scopusid | 56524366100 | |
| gdc.author.wosid | Srivastava, Hari/N-9532-2013 | |
| gdc.author.wosid | Hamed Hassanein, Yasser/Aad-7170-2022 | |
| gdc.author.wosid | Baleanu, Dumitru/B-9936-2012 | |
| gdc.author.wosid | Mekawy, Ibrahim/Gza-8935-2022 | |
| gdc.author.wosid | Mohammed, Pshtiwan/Aaj-4673-2020 | |
| gdc.description.department | Çankaya University | en_US |
| gdc.description.departmenttemp | [Baleanu, Dumitru] Cankaya Univ, Dept Math, TR-06530 Ankara, Turkiye; [Baleanu, Dumitru] Inst Space Sci, R76900, Bucharest, Romania; [Baleanu, Dumitru] Lebanese Amer Univ, Sch Arts & Sci, Dept Nat Sci, Beirut 11022, Lebanon; [Mohammed, Pshtiwan Othman] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani 46001, Iraq; [Srivastava, Hari Mohan] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada; [Srivastava, Hari Mohan] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan; [Al-Sarairah, Eman] Khalifa Univ, Dept Math, POB 127788, Abu Dhabi, U Arab Emirates; [Al-Sarairah, Eman] Al Hussein Bin Talal Univ, Dept Math, POB 127788, Maan 33011, Jordan; [Abdeljawad, Thabet] Prince Sultan Univ, Dept Math & Sci, POB 66833, Riyadh 11586, Saudi Arabia; [Abdeljawad, Thabet] China Med Univ, Dept Med Res, Taichung 40402, Taiwan; [Abdeljawad, Thabet] Kyung Hee Univ, Dept Math, 26 Kyungheedae Ro, Seoul 02447, South Korea; [Hamed, Y. S.] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 2023 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4315574284 | |
| gdc.identifier.wos | WOS:000919557700002 | |
| gdc.openalex.fwci | 3.90534099 | |
| gdc.openalex.normalizedpercentile | 0.93 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.scopuscites | 8 | |
| gdc.scopus.citedcount | 8 | |
| gdc.wos.citedcount | 8 | |
| relation.isAuthorOfPublication | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isAuthorOfPublication | f4fffe56-21da-4879-94f9-c55e12e4ff62 | |
| relation.isAuthorOfPublication.latestForDiscovery | ab09a09b-0017-4ffe-a8fe-b9b0499b2c01 | |
| relation.isOrgUnitOfPublication | 26a93bcf-09b3-4631-937a-fe838199f6a5 | |
| relation.isOrgUnitOfPublication | 28fb8edb-0579-4584-a2d4-f5064116924a | |
| relation.isOrgUnitOfPublication | 0b9123e4-4136-493b-9ffd-be856af2cdb1 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 26a93bcf-09b3-4631-937a-fe838199f6a5 |