Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hyers-ulam-mittag-leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorDeepa, Swaminathan
dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorSantra, Shyam Sundar
dc.contributor.authorMoaaz, Osama
dc.contributor.authorGovindan, Vediyappan
dc.contributor.authorAli, Rifaqat
dc.contributor.authorID56389tr_TR
dc.date.accessioned2022-05-23T11:28:35Z
dc.date.available2022-05-23T11:28:35Z
dc.date.issued2022
dc.departmentÇankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümüen_US
dc.description.abstractIn this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform. © 2022 the Author(s), licensee AIMS Press.en_US
dc.identifier.citationGanesh, Anumanthappa...et al. (2022). "Hyers-ulam-mittag-leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform", AIMS Mathematics, Vol. 7, No. 2, pp. 1791-1810.en_US
dc.identifier.doi10.3934/math.2022103
dc.identifier.endpage1810en_US
dc.identifier.issn2473-6988
dc.identifier.issue2en_US
dc.identifier.startpage1791en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12416/5532
dc.identifier.volume7en_US
dc.language.isoenen_US
dc.relation.ispartofAIMS Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCaputo Derivativeen_US
dc.subjectFractional Differential Equationen_US
dc.subjectFractional Fourier Transformen_US
dc.subjectHyers-Ulam-Mittag-Leffler Stabilityen_US
dc.subjectMittag-Leffler Functionen_US
dc.titleHyers-ulam-mittag-leffler stability of fractional differential equations with two caputo derivative using fractional fourier transformtr_TR
dc.titleHyers-Ulam Stability of Fractional Differential Equations With Two Caputo Derivative Using Fractional Fourier Transformen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationf4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscoveryf4fffe56-21da-4879-94f9-c55e12e4ff62

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
294.33 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: