Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Hyers-ulam-mittag-leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Deepa, Swaminathan
dc.contributor.author Baleanu, Dumitru
dc.contributor.author Santra, Shyam Sundar
dc.contributor.author Moaaz, Osama
dc.contributor.author Govindan, Vediyappan
dc.contributor.author Ali, Rifaqat
dc.contributor.authorID 56389 tr_TR
dc.contributor.other Matematik
dc.date.accessioned 2022-05-23T11:28:35Z
dc.date.available 2022-05-23T11:28:35Z
dc.date.issued 2022
dc.department Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü en_US
dc.description.abstract In this paper, we discuss standard approaches to the Hyers-Ulam Mittag Leffler problem of fractional derivatives and nonlinear fractional integrals (simply called nonlinear fractional differential equation), namely two Caputo fractional derivatives using a fractional Fourier transform. We prove the basic properties of derivatives including the rules for their properties and the conditions for the equivalence of various definitions. Further, we give a brief basic Hyers-Ulam Mittag Leffler problem method for the solving of linear fractional differential equations using fractional Fourier transform and mention the limits of their usability. In particular, we formulate the theorem describing the structure of the Hyers-Ulam Mittag Leffler problem for linear two-term equations. In particular, we derive the two Caputo fractional derivative step response functions of those generalized systems. Finally, we consider some physical examples, in the particular fractional differential equation and the fractional Fourier transform. © 2022 the Author(s), licensee AIMS Press. en_US
dc.identifier.citation Ganesh, Anumanthappa...et al. (2022). "Hyers-ulam-mittag-leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform", AIMS Mathematics, Vol. 7, No. 2, pp. 1791-1810. en_US
dc.identifier.doi 10.3934/math.2022103
dc.identifier.endpage 1810 en_US
dc.identifier.issn 2473-6988
dc.identifier.issue 2 en_US
dc.identifier.startpage 1791 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12416/5532
dc.identifier.volume 7 en_US
dc.language.iso en en_US
dc.relation.ispartof AIMS Mathematics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Caputo Derivative en_US
dc.subject Fractional Differential Equation en_US
dc.subject Fractional Fourier Transform en_US
dc.subject Hyers-Ulam-Mittag-Leffler Stability en_US
dc.subject Mittag-Leffler Function en_US
dc.title Hyers-ulam-mittag-leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform tr_TR
dc.title Hyers-Ulam Stability of Fractional Differential Equations With Two Caputo Derivative Using Fractional Fourier Transform en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isAuthorOfPublication.latestForDiscovery f4fffe56-21da-4879-94f9-c55e12e4ff62
relation.isOrgUnitOfPublication 26a93bcf-09b3-4631-937a-fe838199f6a5
relation.isOrgUnitOfPublication.latestForDiscovery 26a93bcf-09b3-4631-937a-fe838199f6a5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Article.pdf
Size:
294.33 KB
Format:
Adobe Portable Document Format
Description:
Yayıncı sürümü

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: