Çankaya GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mitigating Cavitation Effects on Francis Turbine Performance: a Two-Phase Flow Analysis

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Due to their ability to operate over a wide range of flow rates and generate high power, Francis turbines are the most widely used of hydroturbine type. Hydraulic turbines, are designed for specific flow and head conditions tailored to site conditions. However, Francis turbines can also be operated outside of design conditions due to varying flow and head values. Operation outside of design conditions can lead to cavitation. In this study, singlephase steady-state an alyses were conducted initially to examine cavitation in detail, followed by two-phase transient analyses. The results obtained from these analyses were compared to determine the cavitation characteristics of the designed turbine. The steady-state simulation results indicate the occurrence of cavitation, including traveling bubble and draft tube cavitation, under overload operating conditions. However, these cavitation characteristics are not observed in the two-phase transient simulation results under the same operating conditions. Additionally, the turbine efficiency is predicted to be higher in the transient simulation results. This is attributed to the frozen rotor interface used in the steady-state simulations, which over predicts flow irregularities. The reduced flow irregularities in the transient results have resulted in lower cavitation and losses, leading to higher predicted turbine efficiency.

Description

Keywords

Cavitation, Cfd, Experiment, Francis Turbine, Multi-Phase

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1

Source

Volume

317

Issue

Start Page

End Page